Авогадро в химии формула. Важнейшее положение в химии

Закон Авогадро, открытый в 1811 г., сыграл большую роль в развитии хими. Прежде всего он способствовал признанию атомно-молекулярного учения, сформулированного впервые в середине XVIII в. М.В. Ломоносовым. Так, например, пользуясь числом Авогадро:

оказалось возможным вычислять не только абсолютные массы атомов и молекул, но и собственно линейные размеры этих частиц. Согласно закону Авогадро:

«В равных объёмах различных газов при постоянном давлении и температуре содержится одинаковое число молекул, равное »

Из закона Авогадро вытекает ряд важных следствий касающихся молярного объёма и плотности газов. Так, из закона Авогадро непосредственно следует, что одинаковое число молекул различных газов будут занимать одинаковый объём, равный 22,4 литра. Такой объём газов получил название молярного объёма . Верно и обратное – молярный объём различных газов одинаков и равен 22,4 л:

Действительно, поскольку 1 моль любого вещества содержит одинаковое число молекул, равное , то очевидно и их объёмы в газообразном состоянии при одинаковых условиях будут одинаковыми. Таким образом, при нормальных условиях (н.у.), т.е. при давлении и температуре молярный объём различных газов будет составлять . Количество вещества , объём и молярный объём газов могут быть связаны между собой в общем случае соотношением вида:


откуда соответственно:

В общем случае различают нормальные условия (н.у.):

к стандартным условиям относят:

Для того чтобы перевести температуру по шкале Цельсия в температуру по шкале Кельвина, используют следующее соотношение:

Массу собственно газа можно вычислить по значению его плотности , т.е.

Поскольку как было показано выше:

тогда очевидно:

откуда соответственно:


Из приведенных нами выше соотношений вида:

после подстановки в выражение:

также следует, что:

откуда соответственно:

и таким образом имеем:

Поскольку при нормальных условиях 1 моль любого занимает объём равный:

тогда соответственно:


Полученное таким образом соотношение достаточно важно для понимания 2-го следствия из закона Авогадро, которое в свою очередь непосредственно связано с таким понятием как относительная плотность газов . В общем случае, относительная плотность газов – величина, показывающая, во сколько раз один газ тяжелее или легче другого, т.е. во сколько раз плотность одного газа больше или меньше плотности другого, т.е. имеем соотношение вида:

Так, для первого газа имеем:

соответственно для второго газа:

тогда очевидно:

и таким образом:

Другими словами, относительная плотность газа есть отношение молекулярной массы исследуемого газа к молекулярной массе газа, с которым производится сравнение. Относительная плотность газа – безразмерная величина. Таким образом, для того чтобы вычислить относительную плотность одного газа по другому, достаточно знать молекулярные относительные молекулярные массы этих газов. Для того чтобы было понятно, с каким газом проводят сравнение, ставят индекс. Например, обозначает, что сравнение проводят с водороду и тогда говорят о плотности газа по водороду, не употребляя уже слово «относительная», принимая это как бы по умолчанию. Аналогично измерения проводят, беря в качестве газа сравнения – воздух. В этом случае указывают, что сравнение исследуемого газа проводят с воздухом . При этом средняя молекулярная масса воздуха принимается равной 29 , а поскольку относительная молекулярная масса и молярная масса численно совпадают, тогда:

Химическая формула исследуемого газа ставится рядом в скобках, например:

и читается как – плотность хлора по водороду. Зная относительную плотность одного газа по отношению к другому, можно вычислить молекулярную, а также молярную массу газа, даже если формула вещества неизвестна. Все приведенные выше соотношения относятся к так называемым нормальным условиям.

В уроке 23 «Закон Авогадро » из курса «Химия для чайников » поговорим о роли изучения газов для всей науки, а также дадим определение закону Авогадро. Этим уроком мы открываем третий раздел курса, под названием «Законы газового состояния». Рекомендую просмотреть прошлые уроки, так как в них изложены основы химии, которые понадобятся вам в изучении данной главы.

Предисловие к главе

Слово «Газ » происходит от хорошо известного греческого слова хаос. Химики гораздо позже подошли к изучению газов, чем других веществ. Твердые и жидкие вещества было значительно легче опознавать и отличать друг от друга, а представление о различных «воздухах» зарождалось очень медленно. Диоксид углерода был получен из известняка только в 1756 г. Водород открыли в 1766 г., азот — в 1772 г., а кислород — в 1781 г. Несмотря на столь позднее открытие газов, они являлись первыми веществами, физические свойства которых удавалось объяснить при помощи простых законов. Оказалось, что когда вещества, находящиеся в этом трудноуловимом состоянии, подвергаются изменениям температуры и давления, они ведут себя по гораздо более простым законам, чем твердые и жидкие вещества. Более того, одним из важнейших испытаний атомистической теории оказалась ее способность объяснить поведение газов. Эта история излагается в данной главе.

Заключив в замкнутый сосуд образец какого-либо газа, мы можем измерить его массу, объем, давление на стенки сосуда, вязкость, температуру, теплопроводность и скорость распространения нем звука. Легко также измерить скорость эффузии (истечения) газа через отверстие в сосуде и скорость, с которой один газ диффундирует (проникает) в другой. В данном разделе будет показано, что все эти свойства не являются независимыми друг от друга, а связаны при помощи довольно простой теории, основанной на предположении, что газы состоят из непрерывно движущихся и сталкивающихся частиц.

В развитие атомистической теории чрезвычайно важную роль сыграла гипотеза, выдвинутая в 1811 г. Амедо Авогадро (1776-1856). Авогадро предположил, что в равных объемах всех газов, при одинаковых температуре и давлении, содержится равное число молекул. Это означает, что плотность газа должна быть пропорциональна молекулярной массе данного газа. Под плотностью газа понимается его масса, приходящаяся на единицу объема и измеряемая в граммах на миллилитр (г/мл).

На гипотезу Авогадро обратили внимание лишь спустя 50 лет, которая после многочисленных испытаний было подтверждена и из гипотезы превратилась в закон Авогадро . В знак запоздалого признания незаслуженно обойденного вниманием ученого число молекул в моле вещества впоследствии получило название числа Авогадро , равное 6,022·10 23 .

Если воспользоваться законом Авогадро, то число молекул газа, а следовательно и число n его молей должно быть пропорционально объему V газа:

  • Число молей газа n = k·V (при постоянных P и Т)

В этом уравнении k — коэффициент пропорциональности, зависящий от температуры T и давления P .

В уроке 23 «Закон Авогадро » мы рассмотрели одну из многих закономерностей, присущих газам. В данной главе мы обсудим и другие закономерности, связывающие между собой давление газа P, его объем V, температуру T и число молей n в данном образце газа. Надеюсь урок был познавательным и понятным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

Высчитать объём, молярную массу, количество газообразного вещества и относительную плотность газа помогает закон Авогадро в химии. Гипотеза была сформулирована Амедео Авогадро в 1811 году, а позже была подтверждена экспериментально.

Закон

Первым исследовал реакции газов Жозеф Гей-Люссак в 1808 году. Он сформулировал законы теплового расширения газов и объёмных отношений, получив из хлористого водорода и аммиака (двух газов) кристаллическое вещество - NH 4 Cl (хлорид аммония). Выяснилось, что для его создания необходимо взять одинаковые объёмы газов. При этом если один газ был в избытке, то «лишняя» часть после реакции оставалась неиспользованной.

Чуть позже Авогадро сформулировал вывод о том, что при одинаковых температурах и давлении равные объёмы газов содержат одинаковое количество молекул. При этом газы могут обладать разными химическими и физическими свойствами.

Рис. 1. Амедео Авогадро.

Из закона Авогадро вытекает два следствия:

  • первое - один моль газа при равных условиях занимает одинаковый объём;
  • второе - отношение масс одинаковых объёмов двух газов равно отношению их молярных масс и выражает относительную плотность одного газа по другому (обозначается D).

Нормальными условиями (н.у.) считаются давление Р=101,3 кПа (1 атм) и температура Т=273 К (0°С). При нормальных условиях молярный объём газов (объём вещества к его количеству) составляет 22,4 л/моль, т.е. 1 моль газа (6,02 ∙ 10 23 молекул - постоянное число Авогадро) занимает объём 22,4 л. Молярный объём (V m) - постоянная величина.

Рис. 2. Нормальные условия.

Решение задач

Главное значение закона - возможность проводить химические расчёты. На основе первого следствия закона можно вычислить количество газообразного вещества через объём по формуле:

где V - объём газа, V m - молярный объём, n - количество вещества, измеряемое в молях.

Второй вывод из закона Авогадро касается расчёта относительной плотности газа (ρ). Плотность высчитывается по формуле m/V. Если рассматривать 1 моль газа, то формула плотности будет выглядеть следующим образом:

ρ (газа) = M/V m ,

где M - масса одного моля, т.е. молярная масса.

Для расчёта плотности одного газа по другому газу необходимо знать плотности газов. Общая формула относительной плотности газа выглядит следующим образом:

D (y) x = ρ(x) / ρ(y),

где ρ(x) - плотность одного газа, ρ(y) - второго газа.

Если подставить в формулу подсчёт плотности, то получится:

D (y) x = M(х) / V m / M(y) / V m .

Молярный объём сокращается и остаётся

D (y) x = M(х) / M(y).

Рассмотрим практическое применение закона на примере двух задач:

  • Сколько литров СО 2 получится из 6 моль MgCO 3 при реакции разложения MgCO 3 на оксид магния и углекислый газ (н.у.)?
  • Чему равна относительная плотность CO 2 по водороду и по воздуху?

Сначала решим первую задачу.

n(MgCO 3) = 6 моль

MgCO 3 = MgO+CO 2

Количество карбоната магния и углекислого газа одинаково (по одной молекуле), поэтому n(CO 2) = n(MgCO 3) = 6 моль. Из формулы n = V/V m можно вычислить объём:

V = nV m , т.е. V(CO 2) = n(CO 2) ∙ V m = 6 моль ∙ 22,4 л/моль = 134,4 л

Ответ: V(СО 2) = 134,4 л

Решение второй задачи:

  • D (H2) CO 2 = M(CO 2) / M(H 2) = 44 г/моль / 2 г/моль = 22;
  • D (возд) CO 2 = M(CO 2) / M (возд) = 44 г/моль / 29 г/моль = 1,52.

Рис. 3. Формулы количества вещества по объёму и относительной плотности.

Формулы закона Авогадро работают только для газообразных веществ. Они не применимы к жидкостям и твёрдым веществам.

Что мы узнали?

Согласно формулировке закона равные объёмы газов при одинаковых условиях содержат одинаковое количество молекул. При нормальных условиях (н.у.) величина молярного объёма постоянна, т.е. V m для газов всегда равняется 22,4 л/моль. Из закона следует, что одинаковое количество молекул разных газов при нормальных условиях занимают одинаковый объём, а также относительная плотность одного газа по другому - отношение молярной массы одного газа к молярной массе второго газа.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 230.

Изучение свойств газов позволило итальянскому физику А. Авогадро в 1811г. высказать гипотезу, которая впоследствии была подтверждена опытными данными, и стала называться законом Авогадро: в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул.

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02 10 23 молекул газа (число Авогадро).

Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

где m 1 и m 2 – массы,

М 1 и М 2 – молекулярные массы первого и второго газов.

Поскольку масса вещества определяется по формуле

где ρ – плотность г аза,

V – объем газа,

то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

.

Из этого уравнения можно определить молярную массу газа:

.

2.4 Закон объемных отношений

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку, автору известного закона о тепловом расширении газов. Измеряя объемы газов, вступивших в реакцию и образующихся в результате реакций, Гей-Люссак пришел к обобщению, известному под названием закона простых объемных отношений: объемы вступающих в реакцию газов относятся друг к другу и объемам образующихся газообразных продуктов реакции как небольшие целые числа, равные их стехиометрическим коэффициентам .

Например, 2H 2 + O 2 = 2H 2 O при взаимодействии двух объемов водорода и одного объема кислорода образуются два объема водяного пара. Закон справедлив в том случае, когда измерения объемов проведены при одном и том же давлении и одной и той же температуре.

2.5 Закон эквивалентов

Введение в химию понятий «эквивалент» и «молярная масса эквивалентов» позволило сформулировать закон, называемый законом эквивалентов: массы (объемы) реагирующих друг с другом веществ пропорциональны молярным массам (объемам) их эквивалентов .

Следует остановиться на понятии объема моля эквивалентов газа. Как следует из закона Авогадро, моль любого газа при нормальных условиях занимает объем, равный 22,4 л. Соответственно, для вычисления объема моля эквивалентов газа необходимо знать число моль эквивалентов в одном моле. Так как один моль водорода содержит 2 моля эквивалентов водорода, то 1 моль эквивалентов водорода занимает при нормальных условиях объем:

3 Решение типовых задач

3.1 Моль. Молярная масса. Молярный объем

Задача 1. Сколько молей сульфида железа (II) содержится в 8,8 г FeS?

Решение Определяем молярную массу (М) сульфида железа (II).

M(FeS)= 56 +32 = 8 8 г/моль

Рассчитаем, сколько молей содержится в 8,8 г FeS:

n = 8.8 ∕ 88 = 0.1 моль.

Задача 2. Сколько молекул содержится в 54 г воды? Чему равна масса одной молекулы воды?

Решение Определяем молярную массу воды.

М(Н 2 О) = 18 г/моль.

Следовательно, в 54 г воды содержится 54/18 = 3 моль Н 2 О. Один моль любого вещества содержит 6,02  10 23 молекул. Тогда в 3 молях (54г Н 2 О) содержится 6,02  10 23  3 = 18,06  10 23 молекул.

Определим массу одной молекулы воды:

m H2O = 18 ∕ (6,02 · 10 23) = 2,99 ·10 23 г.

Задача 3. Сколько молей и молекул содержится в 1 м 3 любого газа при нормальных условиях?

Решение 1 моль любого газа при нормальных условиях занимает объем 22,4 л. Следовательно, в 1 м 3 (1000 л) будет содержаться 44,6 молей газа:

n = 1000/ 22.4 = 44,6 моль.

1 моль любого газа содержит 6,02  10 23 молекул. Из этого следует, что в 1 м 3 любого газа при нормальных условиях содержится

6,02  10 23  44,6 = 2,68  10 25 молекул.

Задача 4. Выразите в молях:

а) 6,02  10 22 молекул С 2 Н 2 ;

б) 1,80  10 24 атомов азота;

в) 3,01  10 23 молекул NH 3 .

Какова молярная масса указанных веществ?

Решение Моль – это количество вещества, в котором содержится число частиц любого определенного вида, равное постоянной Авогадро. Отсюда

а)n С2Н2 = 6,02 · 10 22 /6,02 · 10 23 = 0,1 моль;

б) n N =1,8 · 10 24 / 6,02 · 10 23 = 3 моля;

в) n NH3 =3,01 ·10 23 / 6,02 · 10 23 = 0,5 моль.

Молярная масса вещества в граммах численно равна его относительной молекулярной (атомной) массе.

Следовательно, молярные массы данных веществ равны:

а) М(С 2 Н 2) = 26 г/моль;

б) М(N) = 14 г/моль;

в) М(NH 3) = 17 г/моль.

Задача 5. Определите молярную массу газа, если при нормальных условиях 0,824 г его занимают объем 0,260 л.

Решение При нормальных условиях 1 моль любого газа занимает объем 22,4 л. Вычислив массу 22,4 л данного газа, мы узнаем его молярную массу.

0,824 г газа занимают объем 0,260 л

Х г газа занимают объем 22,4 л

Х = 22,4 · 0,824 ∕ 0,260 = 71 г.

Следовательно, молярная масса газа равна 71 г/моль.

3.2 Эквивалент. Фактор эквивалентности. Молярная масса эквивалентов

Задача 1. Вычислите эквивалент, фактор эквивалентности и молярную массу эквивалентов Н 3 РО 4 при реакциях обмена, в результате которых образуются кислые и нормальные соли.

Решение Запишем уравнения реакций взаимодействия фосфорной кислоты со щелочью:

Н 3 РО 4 + NaOH = NaH 2 PO 4 + H 2 O; (1)

Н 3 РО 4 + 2NaOH = Na 2 HPO 4 + 2H 2 O; (2)

Н 3 РО 4 + 3NaOH = Na 3 PO 4 + 3H 2 O. (3)

Так как фосфорная кислота – трехосновная кислота, она образует две кислые соли (NaH 2 PO 4 – дигидрофосфат натрия и Na 2 HPO 4 – гидрофосфат натрия) и одну среднюю соль (Na 3 PO 4 – фосфат натрия).

В реакции (1) фосфорная кислота обменивает на металл один атом водорода, т.е. ведет себя как одноосновная кислота, поэтому f э (Н 3 РО 4) в реакции (1) равен 1; Э(Н 3 РО 4) = Н 3 РО 4 ; М э (Н 3 РО 4) = 1· М(Н 3 РО 4) = 98 г/моль.

В реакции (2) фосфорная кислота обменивает на металл два атома водорода, т.е. ведет себя как двухосновная кислота, поэтому f э (Н 3 РО 4) в реакции (2) равен 1/2; Э(Н 3 РО 4) = 1/2Н 3 РО 4 ; М э (Н 3 РО 4) = 1/2 · М (Н 3 РО 4) = 49 г/моль.

В реакции (3) фосфорная кислота ведет себя как трехосновная кислота, поэтому f э (Н 3 РО 4) в данной реакции равен 1/3; Э(Н 3 РО 4) = 1/3Н 3 РО 4 ; М э (Н 3 РО 4) = 1/3 · М (Н 3 РО 4) = 32,67 г/моль.

Задача 2 . Избытком гидроксида калия подействовали на растворы: а) дигидрофосфата калия; б) нитрата дигидроксовисмута (III). Напишите уравнения реакций этих веществ с КОН и определите их эквиваленты, факторы эквивалентности и молярные массы эквивалентов.

Решение Запишем уравнения происходящих реакций:

КН 2 РО 4 + 2КОН = К 3 РО 4 + 2 Н 2 О;

Bi(OH) 2 NO 3 + KOH = Bi(OH) 3 + KNO 3 .

Для определения эквивалента, фактора эквивалентности и молярной массы эквивалента можно использовать различные подходы.

Первыйоснован на том, что вещества вступают в реакцию в эквивалентных количествах.

Дигидрофосфат калия взаимодействует с двумя эквивалентами гидроксида калия, т. к. Э(КОН) = КОН. C одним эквивалентом КОН взаимодействует 1/2 KH 2 PO 4 , следовательно, Э(КН 2 PO 4) = 1/2KH 2 PO 4 ; f э (KH 2 PO 4) = 1/2; Мэ (KH 2 PO 4) = 1/2 ·М(KH 2 PO 4) = 68 г/моль.

Нитрат дигидроксовисмута (III) взаимодействует с одним эквивалентом гидроксида калия, следовательно, Э(Bi(OH) 2 NO 3) = Bi(OH) 2 NO 3 ; f э (Bi(OH) 2 NO 3) = 1; М э (Bi(OH) 2 NO 3) = 1 · М(Bi(OH) 2 NO 3) = 305 г/моль.

Второй подход основан на том, что фактор эквивалентности сложного вещества равен единице, деленной на число эквивалентности, т.е. число образовавшихся либо перестроившихся связей.

Дигидрофосфат калия при взаимодействии с КОН обменивает на металл два атома водорода, следовательно, f э (КН 2 РО 4)= 1/2; Э(КН 2 РО 4) = 1/2 КН 2 РО 4 ; М э (1/2 КН 2 РО 4) = 1/2 · М (КН 2 РО 4) = 68 г/моль.

Нитрат дигидроксовисмута (III) при реакции с гидроксидом калия обменивает одну группу NO 3 – , следовательно, (Bi(OH) 2 NO 3) = 1; Э(Bi(OH) 2 NO 3) = Bi(OH) 2 NO 3 ; М э (Bi(OH) 2 NO 3) = 1 · М э (Bi(OH) 2 NO 3) = 305 г/моль.

Задача 3. При окислении 16,74 г двухвалентного металла образовалось 21,54 г оксида. Вычислите молярные массы эквивалентов металла и его оксида. Чему равны молярная и атомная масса металла?

Р ешение Согласно закону сохранения массы веществ, масса оксида металла, образовавшегося при окислении металла кислородом, равна сумме масс металла и кислорода.

Следовательно, масса кислорода, необходимого для образования 21,5 г оксида при окислении 16,74 г металла, составит:

21,54 – 16,74 = 4,8 г.

Согласно закону эквивалентов

m Me ∕ M э (Me) = mO 2 ∕ M э (O 2); 16,74 ∕ M э (Me) = 4,8 ∕ 8.

Следовательно, М э(Ме) = (16,74 · 8) ∕ 4,8 = 28 г/моль.

Молярная масса эквивалента оксида может быть рассчитана как сумма молярных масс эквивалентов металла и кислорода:

Мэ(МеО) = M э (Me) + M э (O 2) = 28 + 8 + 36 г/моль.

Молярная масса двухвалентного металла равна:

М (Ме) = Мэ (Ме) ∕ fэ(Ме) = 28 ∕ 1 ∕ 2 = 56 г/моль.

Атомная масса металла (A r (Me)), выраженная в а.е.м., численно равна молярной массе A r (Me) = 56 а.е.м.

Итальянский физик и химик Лоренцо Романо Амедео Карло Авогадро родился в 1776 году в Турине в дворянской семье. Так как в то время принято было передавать профессии по наследству Авогадро в 16 лет окончил Туринский университет, а в 20 получил ученую степень доктора церковного права.

С 25 лет самостоятельно занимается изучением физики и математики. И в 1803 году Амедео представил свою первую научную работу по изучению свойств электричества в Туринскую академию. В 1809 году учёному предложили должность профессора в колледже города Верчелли, а с 1820 года учёный успешно преподаёт в Туринском университете. Преподавательской деятельностью занимался до 1850 года.

Авогадро проводил различные исследования по изучению физических и химических свойств и явлений. Его научные работы посвящены электрохимической теории, электричеству, удельной теплоемкости, номенклатуре химических соединений. Авогадро впервые определил атомные массы углерода, азота, кислорода, хлора и других элементов; установил количественный состав молекул многих веществ, среди которых водород, вода, аммиак, азот и другие. Но химики отвергали теории Авогадро, и работы учёного были непризнанны.

Лишь в 1860 году благодаря усилиям С. Канниццаро многие работы Авогадро были пересмотрены и оправданы. В честь фамилии ученого названо постоянное число молекул в 1 моле идеального газа число Авогадро (физическая постоянная величина, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества = 6,0222310 23 . С этого времени начал широко применятся в химии закон Авогадро.

В 1811 году Авогадро установил закон, который утверждал, что в одинаковых объемах газов содержится равное число молекул при одинаковых температурах и давлении. А в 1814 году появляется статья учёного «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений», в которой четко формулируется закон Авогадро.

Каким образом учёный пришёл к такому заключению?

Авогадро тщательно проанализировал результаты экспериментов Гей-Люссака и других ученых и понял, как устроена молекула газа. Известно, что при протекании химической реакции между газами соотношение объемов этих газов такое же, как и их молекулярное соотношение. Получается, что можно, измеряя плотность разных газов, определять относительные массы молекул, из которых эти газы состоят, и атомов. То есть, если в 1 литре кислорода содержится столько молекул, сколько и в 1 литре водорода, то отношение плотностей этих газов равно отношение масс молекул. Авогадро отметил, что молекулы простых газах могут состоять и из нескольких атомов.

Закон Авогадро широко используется при расчетах по химическим формулам и уравнениям химических реакций, позволяет определять относительные молекулярные массы газов и количество молекул в моле любого вещества.

Если у Вас появились вопросы, Вы хотите более детально остановиться на данном материале или необходима помощь при решении задач, онлайн репетиторы всегда готовы помочь. В любое время и в любом месте ученик может обратиться за помощью к онлайн репетитору и получить консультацию по любому предмету школьной программы. Обучение проходит посредством специально разработанного программного обеспечения. Квалифицированные педагоги оказывают помощь при выполнении домашних заданий, объяснении непонятного материала; помогают подготовиться к ГИА и ЕГЭ. Ученик выбирает сам, проводить занятия с выбранным репетитором на протяжении длительного времени, или использовать помощь педагога только в конкретных ситуациях, когда возникают сложности с определённым заданием.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Последние материалы раздела:

Христианская Онлайн Энциклопедия
Христианская Онлайн Энциклопедия

Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

Принятие христианства на руси
Принятие христианства на руси

КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...