Калькулятор онлайн. Решение неравенств: линейные, квадратные и дробные. Как решать неравенства? Как решать дробные и квадратные неравенства

Например, неравенством является выражение \(x>5\).

Виды неравенств:

Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

Например:
\(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

\(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

\(2x+1\geq4(5-x)\)

Переменная только в первой степени

\(3x^2-x+5>0\)

Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

\(\log_{4}{(x+1)}<3\)

\(2^{x}\leq8^{5x-2}\)

... и так далее.

Что такое решение неравенства?

Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

\(x+6>10\) \(|-6\)
\(x>4\)

То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

Ответ: \(x\in(4;+\infty)\)

Когда в неравенстве меняется знак?

В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

\(3>1\) \(|\cdot2\)
\(6>2\)

Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

\(3>1\) \(|\cdot(-3)\)
\(-9>-3\)

Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
С делением получится аналогично, можете проверить сами.

Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

Пример: Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

\(2x+2-1<7+8x\)

Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

\(2x-8x<7-2+1\)

\(-6x<6\) \(|:(-6)\)

Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

Запишем ответ в виде интервала

Ответ: \(x\in(-1;\infty)\)

Неравенства и ОДЗ

Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

Пример: Решить неравенство \(\sqrt{x+1}<3\)

Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

\(x+1<9\) \(|-1\)
\(x<8\)

Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

\(\sqrt{-5+1}<3\)
\(\sqrt{-4}<3\)

Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

\(x+1\geq0\)
\(x\geq-1\)

И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

Ответ: \(\left[-1;8\right)\)

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)

Не все знают, как решать неравенства, которые по своей структуре имеют сходные и отличительные черты с уравнениями. Уравнение – упражнение, состоящее их двух частей, между которыми стоит знак равенства, а между частями неравенства может стоять знак «больше» или «меньше». Таким образом, прежде чем найти решение конкретного неравенства, мы должны понимать, что стоит учитывать знак числа (положительное или отрицательное), если возникает необходимость умножения обеих частей на какое-либо выражение. Этот же факт следует учитывать, если требуется для решения неравенства возводить в квадрат, поскольку возведение в квадрат проводится путем умножения.

Как решать систему неравенств

Намного сложнее решать системы неравенств, чем обычные неравенства. Как решать неравенства 9 класс, рассмотрим на конкретных примерах. Следует понимать, что перед тем, как решать квадратные неравенства (системы) или любые иные системы неравенств, необходимо решить каждое неравенство по отдельности, после чего сопоставить их. Решением системы неравенства будет либо положительный, либо отрицательный ответ (имеет система решение или не имеет решения).

Задача - решить совокупность неравенств:

Решим каждое неравенство по отдельности

Строим числовую прямую, на которой изображаем множество решений

Так как совокупность - это объединение множеств решений, то это множество на числовой прямой должно быть подчеркнуто минимум одной линией.

Решение неравенств с модулем

Данный пример покажет, как решать неравенства с модулем. Итак, у нас имеется определение:

Нам необходимо решить неравенство:

Прежде чем решить такое неравенство, необходимо избавиться от модуля (знака)

Запишем, основываясь данными определения:

Теперь следует решать каждую из систем по отдельности.

Построим одну числовую прямую, на которой изобразим множества решений.

В результате у нас получилась совокупность, объединяющая множество решений.

Решение квадратичных неравенств

Используя числовую прямую рассмотрим на примере решение квадратичных неравенств. У нас есть неравенство:

Нам известно, что графиком квадратного трехчлена является парабола. Так же нам известно, что ветви параболы направленные вверх, если а>0.

x 2 -3x-4 < 0

Пользуясь теоремой Виета находим корни х 1 = - 1; х 2 = 4

Изобразим параболу, вернее, ее эскиз.

Таким образом, мы выяснили, что значения квадратного трехчлена будут меньше 0 на отрезке от – 1 до 4.

У многих возникают вопросы при решении двойных неравенств типа g(x) < f(x) < q(x). Перед тем, как решать двойные неравенства, необходимо их раскладывать на простые, и каждое простое неравенство решать по отдельности. Например, разложив наш пример, получим в результате систему неравенств g(x) < f(x) и f(x) < q(x), которую следует и решать.

На самом деле, методов решения неравенств несколько, поэтому вы можете использовать для решения сложных неравенств графический способ.

Решение дробных неравенств

Более тщательного подхода требуют к себе дробные неравенства. Это обусловлено тем, что в процессе решения некоторых дробных неравенств может измениться знак. Перед тем, как решать дробные неравенства, необходимо знать, что для их решения используется метод интервалов. Дробное неравенство необходимо представить таким образом, чтобы одна сторона от знака выглядела, как дробно-рациональное выражение, а вторая – «- 0». Преобразуя неравенство таким образом, мы получим в результате f(x)/g(x) > (.

Решение неравенств методом интервалов

Методика интервалов основана на методе полной индукции, то есть, необходимо для нахождения решения неравенства перебрать все возможные варианты. Данный метод решения, возможно, и не потребуется ученикам 8-х классов, поскольку они должны знать, как решать неравенства 8 класс, которые представляют собой простейшие упражнения. А вот для более старших классов этот метод незаменим, так как помогает решить дробные неравенства. Решение неравенств с помощью данной методики основано и на таком свойстве непрерывной функции, как сохранение знака между значениями, в которых она обращается в 0.

Построим график многочлена. Это непрерывная функция, приобретающая значение 0 3 раза, то есть, f(x) будет равен 0 в точках x 1 , x 2 и x 3 , корнях многочлена. В промежутках между этими точками, знак функции сохраняется.

Так как для решения неравенства f(x)>0 нам необходим знак функции, переходим к координатной прямой, оставив график.

f(x)>0 при x(x 1 ; x 2) и при x(x 3 ;)

f(x)x(- ; x 1) и при х (x 2 ; x 3)

На графике наглядно показаны решения неравенств f(x)f(x)>0 (синим цветом решение для первого неравенства, а красным – для второго). Чтобы определить Для определения знак функции на интервале, достаточно того, чтобы вам был известен знак функции в одной из точек. Данная методика позволяет быстро решать неравенства, в которых левая часть разложена на множители, потому что в таких неравенствах достаточно просто найти корни.

Неравенство это выражение с, ≤, или ≥. Например, 3x - 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно. Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений . Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами .

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств
Для любых вещественных чисел a, b, и c :
Принцип прибавления неравенств : Если a Принцип умножения для неравенств : Если a 0 верно, тогда ac Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами .

Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x - 5 b) 13 - 7x ≥ 10x - 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x - 5 и y 2 = 6 - 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и , или , тогда формируется двойное неравенство . Двойное неравенство, как
-3 и 2x + 5 ≤ 7
называется соединённым , потому что в нём использовано и . Запись -3 Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2 Решите -3 Решение У нас есть

Множество решений {x|x ≤ -1 или x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x - 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или x > 3}, y 1 ≤ y 2 или y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| |x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x| |y| ≥ 1 эквивалентно y ≤ -1 или y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4 Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2| b) |5 - 2x| ≥ 1

Решение
a) |3x + 2|

Множеством решением есть {x|-7/3
b) |5 - 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или x ≥ 3}, или (-∞, 2] }

Последние материалы раздела:

Христианская Онлайн Энциклопедия
Христианская Онлайн Энциклопедия

Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

Принятие христианства на руси
Принятие христианства на руси

КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...