Проект на тему: Пифагоровы штаны во все стороны равны. Пифагоровы штаны на все стороны равны

Шутливое доказательство теоремы Пифагора; также в шутку о мешковатых брюках приятеля.

  • - тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2...

    Математическая энциклопедия

  • - тройки таких натуральных чисел, что треугольник, длины сторон к-рого пропорциональны этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5...

    Естествознание. Энциклопедический словарь

  • - см. Ракета спасательная...

    Морской словарь

  • - тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны этим числам, является прямоугольным...

    Большая Советская энциклопедия

  • - mil. Неизм. Выражение, используемое при перечислении или противопоставлении двух фактов, явлений, обстоятельств...

    Учебный фразеологический словарь

  • - Из романа-антиутопии «Скотный двор» английского писателя Джорджа Оруэлла...
  • - Впервые встречается в сатире «Дневник либерала в Петербурге» Михаила Евграфовича Салтыкова-Щедрина, который так образно описал двойственную, трусливую позицию российских либералов - своих...

    Словарь крылатых слов и выражений

  • - Говорится в случае, когда собеседник долго и невнятно пытался что-то сообщить, загромождая основную мысль второстепенными деталями...

    Словарь народной фразеологии

  • - Число пуговиц известно. Почему же хую тесно? - о штанах и мужском половом органе. . Чтобы это доказать, надо снять и показать 1) о теореме Пифагора; 2) о широких штанах...

    Живая речь. Словарь разговорных выражений

  • - Ср. Нет бессмертия души, так нет и добродетели, "значит, все позволено"... Соблазнительная теория подлецам... Хвастунишка, а суть-то вся: с одной стороны, нельзя не признаться, а с другой - нельзя не сознаться...

    Толково-фразеологический словарь Михельсона

  • - Пиѳагоровы штаны иноск. о человѣкѣ даровитомъ. Ср. Это несомнѣнности мудрецъ. Въ древности онъ навѣрное выдумалъ бы пиѳагоровы штаны... Салтыковъ. Пестрыя письма...
  • - Съ одной стороны - съ другой стороны. Ср. Нѣтъ безсмертія души, такъ нѣтъ и добродѣтели, «значитъ, все позволено»... Соблазнительная теорія подлецамъ.....

    Толково-фразеологический словарь Михельсона (ориг. орф.)

  • - Шуточное название теоремы Пифагора, возникшее в силу того, что построенные на сторонах прямоугольника и расходящиеся в разные стороны квадраты напоминают покрой штанов...
  • - С ОДНОЙ СТОРОНЫ… С ДРУГОЙ СТОРОНЫ. Книжн...

    Фразеологический словарь русского литературного языка

  • - См. ЗВАНИЯ -...

    В.И. Даль. Пословицы русского народа

  • - Жарг. шк. Шутл. Пифагор. ...

    Большой словарь русских поговорок

"Пифагоровы штаны во все стороны равны" в книгах

11. Пифагоровы штаны

Из книги Фридл автора Макарова Елена Григорьевна

11. Пифагоровы штаны Моя хорошая девочка!Прежде всего – самая горячая благодарность за Дворжака; он очень интересен, не так уж легко читается, но я ему очень рада. Я тебе напишу подробнее, когда прочту несколько глав.Ты не представляешь, какую радость доставляет мне твой

III «Не все ли места равны?»

Из книги Батюшков автора Сергеева-Клятис Анна Юрьевна

III «Не все ли места равны?» В конце поста, не дождавшись Пасхи, которая в 1815 году приходилась на 18 апреля, Батюшков на Страстной седмице выехал из Петербурга в имение отца Даниловское. Однако до этого произошло еще одно событие, о котором нет упоминаний в письмах Батюшкова,

Пифагоровы штаны

Из книги От добермана до хулигана. Из имен собственных в нарицательные автора Блау Марк Григорьевич

Пифагоровы штаны О том, что «пифагоровы штаны во все стороны равны», знали еще дореволюционные гимназисты, они-то и сочинили эту стихотворную шпаргалку. Да что там гимназисты! Наверное, уже великому Ломоносову, изучавшему геометрию в своей Славяно-греко-латинской

1.16. Обеспечительные меры как со стороны налоговых органов, так и со стороны налогоплательщиков

Из книги Налоговые проверки. Как с достоинством выдержать визит инспекторов автора Семенихин Виталий Викторович

1.16. Обеспечительные меры как со стороны налоговых органов, так и со стороны налогоплательщиков Налогоплательщики редко соглашаются с выводами налоговых органов, сделанными по результатам налоговых проверок. И при этом большинство споров в судах разрешается в пользу

Перед кредитом все равны

Из книги Деньги. Кредит. Банки: конспект лекций автора Шевчук Денис Александрович

Перед кредитом все равны Официальная история неотложного кредитования в Америке ведет отсчет с 1968 года, когда там был принят Закон о потребительском кредите. В частности, он устанавливает справедливые правила предоставления ссуды, верхние пределы ставок, правила

SWOT-анализ (сильные стороны, слабые стороны, возможности, угрозы)

Из книги Треннинг. Настольная книга тренера автора Торн Кей

SWOT-анализ (сильные стороны, слабые стороны, возможности, угрозы) Этот способ - дополнение структуры «мозговому штурму». Разделите лист флип-чарта на четыре части и озаглавьте их: сильные стороны, слабые стороны, возможности, угрозы.Группа может анализировать бизнес,

Не все покупатели равны

Из книги Как работать по четыре часа в неделю автора Феррис Тимоти

Не все покупатели равны Как только вы достигнете третьего этапа и приток средств станет более-менее установившимся, пора оценить состав ваших покупателей и прополоть эту грядку. Все на свете делится на хорошее и плохое: хорошими и плохими бывают еда, фильмы, секс. Вот и

Глава VII «Пифагоровы штаны» - открытие ассиро-вавилонских математиков

Из книги Когда заговорила клинопись автора Матвеев Константин Петрович

Глава VII «Пифагоровы штаны» - открытие ассиро-вавилонских математиков Математика у ассирийцев и вавилонян, так же как и астрономия, была необходима прежде всего в практической жизни - при строительстве домов, дворцов, дорог, составлении календарей, проведении каналов,

«Под маской все чины равны»

Из книги Петербургские арабески автора Аспидов Альберт Павлович

«Под маской все чины равны» Среди новогодних покупок - елочных игрушек и прочего - может оказаться и маска. Надев ее, мы сразу же становимся другими - как в волшебной сказке. А кто не хочет хоть раз в году прикоснуться к волшебству - к его радостным и безобидным сторонам,

Пифагоровы числа

Из книги Большая Советская Энциклопедия (ПИ) автора БСЭ

Все равны, но некоторые равны более других

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Все равны, но некоторые равны более других Из романа-антиутопии «Скотный двор» (1945) английского писателя Джорджа Оруэлла (псевдоним Эрика Блэра, 1903-1950). Животные некой фермы однажды свергли своего жестокого хозяина и установили республику, провозгласив принцип: «Все

Участие в переговорах в качестве стороны или ассистента стороны

Из книги Хрестоматия альтернативного разрешения споров автора Коллектив авторов

Участие в переговорах в качестве стороны или ассистента стороны Еще одной из форм переговоров, вышедших из медиации, является участие медиатора совместно со стороной (или без нее) в переговорах в качестве представителя стороны.Такой метод принципиально отличается от

Силы были равны

Из книги Великая война не окончена. Итоги Первой Мировой автора Млечин Леонид Михайлович

Силы были равны Никто не предполагал, что война затянется. Но тщательно разработанные Генштабами планы рухнули в первые же месяцы. Силы противостоящих блоков оказались примерно равными. Расцвет новой боевой техники множил число жертв, но не позволял сокрушить врага и

Все животные равны, но некоторые более равны, чем другие

Из книги Фашизофрения автора Сысоев Геннадий Борисович

Все животные равны, но некоторые более равны, чем другие И наконец, хотелось бы вспомнить людей, которые думают, будто Косово может стать каким-то там прецедентом. Мол, если населению Косова «мировое сообщество» (т.е. США и ЕС) предоставит право самому решить свою судьбу на

Почти равны

Из книги Литературная Газета 6282 (№ 27 2010) автора Литературная Газета

Почти равны Клуб 12 стульев Почти равны ИРОНИЧЕСКАЯ ПРОЗА Смерть зашла к одному бедняку. А тот глуховатый был. Так нормальный, но чуть-чуть глуховатый… И видел плохо. Почти ничего не видел. – Ой, к нам гости! Проходите, пожалуйста. Смерть говорит: – Погоди радоваться,

Для чего нужны «пифагоровы штаны» ? Работу выполнили учащиеся 8е класса

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах... Или Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов.

Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Причина такой популярности теоремы Пифагора это её простота, красота, значимость. Теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о её широком применении.

Теорема почти всюду носит имя Пифагора, но в настоящее время все согласны с тем, что она была открыта не Пифагором. Однако одни полагают, что он первым дал её полноценное доказательство, другие же отказывают ему и в этой заслуге. Эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством для построения прямых углов при планировке земельных участков и сооружений зданий.

Доказательство теоремы считалось в кругах учащихся средних веков очень трудным и называлось "ослиным мостом" или "бегством убогих", а сама теорема – "ветряной мельницей" или "теоремой невест". Учащиеся даже рисовали карикатуры и составляли стишки вроде этого: Пифагоровы штаны Во все стороны равны.

Доказательство, основанное на использовании понятия равновеликости фигур. На рисунке изображено два равных квадрата. Длина сторон каждого квадрата равна a + b . Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. Древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

Доказательство, предлагаемое школьным учебником. CD – высота треугольника АВС. АС = √ АD*AB АС 2 = AD*AB Аналогично, ВС 2 = BD*AB Учитывая, что AD + BD = AB , получаем AC 2 + BC 2 = AD*AB+ BD*AB = (AD+BD)*AB= AB 2 А С В D

Задача № 1 С аэродрома вылетели одновременно два самолёта: один - на запад, другой - на юг. Через два часа расстояние между ними было 2000 км. Найдите скорости самолётов, если скорость одного составляла 75% скорости другого. Решение: По теореме Пифагора: 4x2+(0,75x*2)2=20002 6,25x2=20002 2,5x=2000 x=800 0,75x=0,75*800=600. Ответ: 800 км/ч.; 600 км/ч.

Задача № 2. Как следовало бы поступить юному математику, чтобы надёжным образом получить прямой угол? Решение: Можно воспользоваться теоремой Пифагора и построить треугольник, придав его сторонам такую длину, чтобы треугольник получился прямоугольный. Проще всего взять для этого планки длиной в 3, 4 и 5 каких-либо произвольно выбранных равных отрезков.

Задача № 3. Найдите равнодействующую трёх сил по 200 Н каждая, если угол между первой и второй силами и между второй и третьей силами равен 60°. Решение: Модуль суммы первой пары сил равен: F1+22=F12+F22+2*F1*F2cosα где α-угол между векторами F1 и F2, т.е. F1+2=200√ 3 Н. Как ясно из соображений симметрии вектор F1+2 направлен по биссектрисе угла α, поэтому угол между ним и третьей силой равен: β=60°+60°/2=90°. Теперь найдём равнодействующую трёх сил: R2=(F3+F1+2) R=400 Н. Ответ: R=400 Н.

Задача № 4. Молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2≥ a2+b2, значит h≥(a2+b2)1/2. Ответ: h≥(a2+b2)1/2.

В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

Краткий обзор биографии

Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

Рождение теоремы

В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

Теорема Пифагора

Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

Способ первый

Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

Отсюда (а+в) 2 =2ав+с 2

И, следовательно, с 2 =а 2 +в 2

Теорема доказана.

Способ два: подобные треугольники

Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

АС=√АВ*АД, СВ=√АВ*ДВ.

Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

АС 2 =АВ*АД и СВ 2 =АВ*ДВ

Теперь нужно сложить получившиеся неравенства.

АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

Получается, что:

АС 2 + СВ 2 =АВ*АВ

И, следовательно:

АС 2 + СВ 2 =АВ 2

Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

Еще одна методика расчетов

Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

с 2 -в 2 =а 2

с 2 =а 2 +в 2

Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

Самый простой способ доказать теорему Пифагора. Отзывы

Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

Доказательство Дж. Гарфилда

Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

S=а+в/2 * (а+в)

Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

S=ав/2 *2 + с 2 /2

Теперь необходимо уравнять два исходных выражения

2ав/2 + с/2=(а+в) 2 /2

с 2 =а 2 +в 2

О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

Практическое применение теоремы Пифагора

К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

Связь теоремы и астрономии

Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

Радиус передачи мобильного сигнала

Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

АВ (высота вышки) = х;

ВС (радиус передачи сигнала) = 200 км;

ОС (радиус земного шара) = 6380 км;

ОВ=ОА+АВОВ=r+х

Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

Теорема Пифагора в быту

Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

При идеальных габаритах шкафа проверим действие теоремы Пифагора:

АС=√АВ 2 +√ВС 2

АС=√2474 2 +800 2 =2600 мм - все сходится.

Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

АС=√2505 2 +√800 2 =2629 мм.

Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

Теорема Пифагора всем известна со школьной поры. Выдающийся математик доказал великую гипотезу, которой в настоящее время пользуются многие люди. Звучит правило так: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. За многие десятилетия ни один математик не сумел переспорить данное правило. Ведь Пифагор долго шел к своей цели, чтобы в результате чертежи имели место в повседневной жизни.

  1. Небольшой стих к данной теореме, который придумали вскоре после доказательства, напрямую доказывает свойства гипотезы: «Пифагоровы штаны во все стороны равны» . Это двустрочье отложилось в памяти у многих людей – по сей день стихотворение вспоминают при вычислениях.
  2. Данная теорема получила название «Пифагоровы штаны» вследствие того, что при черчении по середине получался прямоугольный треугольник, по бокам которого располагались квадраты . С виду данное черчение напоминало штаны – отсюда и название гипотезы.
  3. Пифагор гордился разработанной теоремой, ведь данная гипотеза отличается от ею подобных максимальным количеством доказательств . Важно: уравнение было занесено в книгу рекордов Гиннесса вследствие 370 правдивых доказательств.

  4. Гипотезу доказывало огромное количество математиков и профессоров из разных стран многими способами . Английский математик Джонс вскоре оглашения гипотезы доказал ее при помощи дифференциального уравнения.

  5. В настоящее время никому неизвестно доказательство теоремы самим Пифагором . Факты о доказательствах математика сегодня не известны никому. Считается, что доказательство чертежей Евклидом - это и есть доказательство Пифагора. Однако некоторые ученые спорят с этим утверждением: многие считают, что Евклид самостоятельно доказал теорему, без помощи создателя гипотезы.

  6. Нынешние ученые обнаружили, что великий математик был не первым, кто открыл данную гипотезу . Уравнение было известно еще задолго до открытия Пифагором. Данный математик сумел лишь воссоединить гипотезу.

  7. Пифагор не давал уравнению название «Теорема Пифагора» . Это название закрепилось после «громкого двустрочья». Математик лишь хотел, чтобы его старания и открытия узнал весь мир и пользовался ими.

  8. Мориц Кантор - великий крупнейший математик нашел и разглядел на древнем папирусе записи с чертежами . Вскоре после этого Кантор понял, что данная теорема была известна египтянам еще 2300 лет до нашей эры. Только тогда ею никто не воспользовался и не стал пытаться доказать.

  9. Нынешние ученые считают, что гипотеза была известна еще в 8 веке до нашей эры . Индийские ученые того времени обнаружили приблизительное вычисление гипотенузы треугольника, наделенного прямыми углами. Правда в то время никто не смог доказать наверняка уравнение по приблизительным вычислениям.

  10. Великий математик Бартель Ван дер Варден после доказательства гипотезы заключил важный вывод : «Заслуга греческого математика считается не открытием направления и геометрии, а лишь ее обоснованием. В руках Пифагора были вычислительные формулы, которые основывались на предположениях, неточных вычислениях и смутных представлениях. Однако выдающемуся ученому удалось превратить из в точную науку».

  11. Известный стихотворец сказал, что в день открытия своего чертежа он воздвиг быкам славную жертву . Именно после открытия гипотезы пошли слухи, что жертвоприношение ста быков «пошло странствовать по страницам книг и изданий». Остряки по сей день шутят, что с тех пор все быки боятся нового открытия.

  12. Доказательство того, что не Пифагор придумал стихотворение про штаны, дабы доказать выдвинутые им чертежи: во времена жизни великого математика штанов еще не было . Они были придуманы через несколько десятилетий.
  13. Размышления Пифагора о собственном правиле: секрет сущего на земле кроется в цифрах . Ведь математик, опираясь на собственную гипотезу, изучил свойства чисел, выявил четность и нечетность, создал пропорции.

Знаменитую теорему Пифагора  - «в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов»  - знают все со школьной скамьи.

Ну, вы помните «Пифагоровы штаны» , которые «во все стороны равны»  - схематический рисунок, поясняющий теорему греческого ученого.

Здесь a и b  - катеты, а с  - гипотенуза:

Сейчас я вам расскажу об одном оригинальном доказательстве этой теоремы, о котором вы, возможно, не знали…

Но, сначала рассмотрим одну лемму  - доказанное утверждение, которое полезно не само по себе, а для доказательства других утверждений (теорем).

Возьмем прямоугольный треугольник с вершинами X , Y и Z , где Z  - прямой угол и опустим перпендикуляр с прямого угла Z на гипотенузу. Здесь W  - точка, в которой высота пересекается с гипотенузой.

Эта линия (перпендикуляр) ZW разбивает треугольник на подобные копии самого себя.

Напомню, что подобными называются треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

В нашем примере образовавшиеся треугольники XWZ и YWZ подобны друг другу и также подобны исходному треугольнику XYZ .

Доказать это несложно.

Начнем с треугольника XWZ, обратите внимание, что ∠XWZ = 90, и поэтому ∠XZW = 180–90-∠X. Но 180–90-∠X - это именно то, что ∠Y, поэтому треугольник XWZ должен быть подобным (все углы равны) треугольнику XYZ. Такое же упражнение можно выполнить для треугольника YWZ.

Лемма доказана! В прямоугольном треугольнике высота (перпендикуляр), опущенная на гипотенузу, разбивает треугольник на два подобных, которые в свою очередь подобны исходному треугольнику.

Но, вернемся к нашим «Пифагоровым штанам»…

Опустим перпендикуляр на гипотенузу c . В результате у нас образовались два прямогульных треугольника внутри нашего прямоугольного треугольника. Обозначим эти треугольники (на картинке вверху зеленым цветом) буквами A и B , а исходный треугольник - буквой С .

Разумеется, площадь треугольника С равна сумме площадей треугольников A и B .

Т.е. А + B = С

Теперь разобьем фигуру вверху («Пифагоровы штаны») на три фигурки-домика:

Как мы уже знаем из леммы, треугольники A , B и C подобны друг другу, поэтому и образовавшиеся фигурки-домики также подобны и являются масштабированными версиями друг друга.

Это означает, что соотношение площадей A и , - это то же самое, что отношение площадей B и b², а также C и .

Таким образом, мы имеем A / a² = B / b² = C / c² .

Обозначим это соотношение площадей треугольника и квадрата в фигуре-домике буквой k .

Т.е. k  - это некий коэффициент, связывающий площадь треугольника (крыши домика) с площадью квадрата под ним:
k = A / a² = B / b² = C / c²

Из этого следует, что площади треугольников можно выразить через площади квадратов под ними таким образом:
A = ka² , B = kb² , и C = kc²

Но, мы помним, что A+B = C , а значит, ka² + kb² = kc²

Или a² + b² = c²

А это и есть доказательство теоремы Пифагора !

Последние материалы раздела:

Христианская Онлайн Энциклопедия
Христианская Онлайн Энциклопедия

Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

Принятие христианства на руси
Принятие христианства на руси

КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...