Кто придумал ток электрический. Основные понятия электричества. История развития электрических средств связи

. (история открытия явления)

До 1600 г. знания европейцев об электричестве оставалось на уровне древних греков, что повторяло историю развития теории паровых реактивных двигателей ("Элеопил" А. Герона).

Основоположником науки об электричестве в Европе стал выпускник Кембриджа и Оксфорда английский физик и придворный врач королевы Елизаветы - Уильям Гилберт (1544-1603). С помощью своего "версора" (первого электроскопа) У. Гильберт показал, что способностью притягивать легкие тела (соломинки) обладает не только натертый янтарь, но и алмаз, сапфир, карборунд, опал, аметист, горный хрусталь, стекло, сланцы и др., которые он назвал "электрическими" минералами.

Кроме того, Гильберт заметил, что пламя "уничтожает" электрические свойства тел, приобретенные при трении, и впервые исследовал магнитные явления, установив, что:

Магнит всегда имеет два полюса - северный и южный;
- одноименные полюса отталкиваются, а разноименные притягиваются;
- распиливая магнит, нельзя получить магнит только с одним полюсом;
- железные предметы под влиянием магнита приобретают магнитные свойства (магнитная индукция);
- природный магнетизм может быть усилен с помощью железной арматуры.

Изучая магнитные свойства намагниченного шара с помощью магнитной стрелки, Гильберт пришел к выводу, что они соответствуют магнитным свойствам Земли, а Земля является самым большим магнитом, что и объясняет постоянное наклонение магнитной стрелки.

1650 г.: Отто фон Герике (1602-1686) создает первую электрическую машину, извлекавшую из натираемого шара, отлитого из серы, значительные искры, уколы которых могли быть даже болезненными. Однако тайна свойств «электрической жидкости» , как в то время называли это явление, не получила тогда никакого объяснения.

1733 г.: французский физик , член Парижской Академии наук, Шарль Франсуа Дюфе (Dufay, Du Fay, 1698-1739) открыл существование двух видов электричества, которые назвал "стеклянным" и "смоляным". Первое возникает на стекле, горном хрустале, драгоценных камнях, шерсти, волосах и т. д.; второе - на янтаре, шелке, бумаге и т. п.

После многочисленных экспериментов Ш. Дюфе впервые электризовал тело человека и "получил" из него искры. В область его научных интересов входил магнетизм, фосфоресценция и двойное лучепреломление в кристаллах, ставшее впоследствии основой для создания оптических лазеров. Для обнаружения измерения электричества пользовался версором Гилберта, сделав его намного более чувствительным. Впервые высказал мысль об электрической природе молнии и грома.

1745 г.: выпускник Лейденского университета (Голландия) физик Питер ван Мушенбрук (Musschenbroek Pieter van, 1692-1761) изобрел первый автономный источник электроэнергии - лейденскую банку и провел с ней ряд опытов, в ходе которых установил взаимозвязь электрического разряда с его физиологическим действием на живой организм.

Лейденская банка представляла собой стеклянный сосуд, стенки которого снаружи и изнутри были оклеены свинцовой фольгой, и являлась первым электрическим конденсатором. Если обкладки прибора, заряженного от электростатического генератора О. фон Герике соединяли тонкой проволокой, то она быстро нагревалась, а иногда и плавилась, что указывало на наличие в банке источника энергии, которую можно было транспортировать далеко от места ее зарядки.

1747 г.: член Парижской Академии наук, французский физик-экспериментатор Жан Антуан Нолле (1700-1770) изобрел первый прибор для оценки электрического потенциала - электроскоп , зарегистрировал факт более быстрого "стекания" электричества с острых тел и впервые сформировал теорию действия электричества на живые организмы и растения.

1747–1753 гг.: американский государственный деятель, ученый и просветитель Бенджамин (Вениамин) Франклин (Franklin, 1706-1790) публикует цикл работ по физике электричества, в которых:
- ввел общепринятое теперь обозначение электрически заряженных состояний «+» и «–» ;
- объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки;
- установил тождество атмосферного и получаемого с помощью трения электричества и привел доказательство электрической природы молнии;
- установил, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними и предложил молниеотвод;
- выдвинул идею электрического двигателя и продемонстрировал «электрическое колесо», вращающееся под действием электростатических сил;
- впервые применил электрическую искру для взрыва пороха.

1759 г.: В России физик Франц Ульрих Теодор Эпинус (Aepinus, 1724-1802),впервые выдвигает гипотезу о наличии связи между электрическими и магнитными явлениями.

1761 г.: Швейцарский механик, физик и астроном Леонард Эйлер (L. Euler, 1707-1783) описывает новую электростатическую машину, состоящую из вращающегося диска из изоляционного материала с радиально наклеенными кожаными пластинами. Для съема электрического заряда к диску надо было подвести шелковые контакты, присоединенные к медным стержням со сферическими окончаниями. Приближая сферы друг к другу, можно было наблюдать процесс электрического пробоя атмосферы (искусственная молния).

1785-1789 гг.: Французский физик Шарль Огюстен Кулон (S. Coulomb, 1736-1806) публикует семь работ. в которых описывает закон взаимодействия электрических зарядов и магнитных полюсов (закон Кулона), вводит понятие магнитного момента и поляризации зарядов и доказывает, что электрические заряды всегда располагаются на поверхности проводника.

1791 г.: В Италии издается трактат Луиджи Гальвани (L. Galvani, 1737-1798), «De Viribus Electricitatis In Motu Musculari Commentarius» («Трактат о силах электричества при мышечном движении»), в котором доказывалось, что электричество вырабатывается живым организмом и наиболее эффективно проявляется в контакте разнородных проводников. В настоящее время этот эффект лежит в основе принципа действия электрокардиографов.

1795 г.: Итальянский профессор Александр Вольта (Alessandro Guiseppe Antonio Anastasio Volta, 1745-1827) исследует явление контактной разности потенциалов различных металлов и с помощью электрометра собственной конструкции дает численную оценку этому явлению. Результаты своих опытов А.Вольта впервые описывает 1 августа 1786 г. в письме своему другу. В настоящее время эффект контакной разности потенциалов используется в термопарах и системах анодной (электрохимической) защиты металлических сооружений.

1799 г:. А. Вольта изобретает источник гальванического (электрического) тока - вольтов столб . Первый вольтов столб состоял из 20 пар медных и цинковых кружочков, разделенных суконными кусочками, смоченными соленой водой, и предположительно мог давать напряжение 40-50 В и ток до 1 А.

В 1800 г. в журнале «Philosophical Transactions of the Royal Society, Vol. 90» под названием «On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds» («Электричество, получаемое в результате простого контакта разных веществ») было описано устройство, названное «электродвижущий аппарат», А. Вольта считал, что в основе принципа действия его источника тока лежит контактная разность потенциалов, и только спустя много лет было установлено, что причиной возникновения э.д.с. в гальваническом элементе является химическое взаимодействие металлов с проводящей жидкостью - электролитом. Осенью 1801 г. в России была создана первая гальваническая батарея, состоящая из 150 серебряных и цинковых дисков. Через год, осенью 1802 г., была изготовлена батарея из 4200 медных и цинковых дисков, дающая напряжение в 1500 В.

1820 г.: датский физик Ханс Кристиан Эрстед (Ersted, 1777-1851) в ходе опытов по отклонению магнитной стрелки под действием проводника с током, установил связь между электрическими и магнитными явлениями. Сообщение об этом явлении, опубликованное в 1820 г., стимулировало исследования в области электромагнетизма, что, в конечном счете, привело к формированию основ современной электротехники.

Первым последователем Х.Эрстеда стал французский физик Андре Мари Ампер (1775-1836) сформулировавший в том-же году правило определения направления действия электрического тока на магнитную стрелку, названное им "правилом пловца" (правило Ампера или правой руки), после чего были определены законы взаимодействия электрических и магнитных полей (1820 г.), в рамках которых впервые была сформулирована идея об использовании электромагнитных явлений для дистанционной передачи электрического сигнала.

В 1822 г. А. Ампер создает первый усилитель электромагнитного поля - многовитковые катушки из медного провода, внутри которых помещались сердечники из мягкого железа (соленоиды), ставшие технологической основой для изобретенного им в 1829 г. электромагнитного телеграфа, открывшего эру современной электросвязи.

821 г.: английский физик Майкл Фарадей (М. Faraday, 1791-1867) познакомился с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током (1820) и после исследования взаимосвязи электрических и магнитных явлений установил факт вращения магнита вокруг проводника с током и вращения проводника с током вокруг магнита.

В течение последующих 10 лет М. Фарадей пытался «превратить магнетизм в электричество», результатом чего стало открытие в 1831 электромагнитной индукции , что привело к формированию основ теории электромагнитного поля и появлению новой отрасли промышленности - электротехники. В 1832 г. М. Фарадей публикует работу, в которой выдвигается идея о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий в атмосфере с конечной скоростью, что стало основой для появления новой отрасли знаний - радиотехники.

Стремясь установить количественные соотношения между различными видами электричества, М. Фарадей начал исследования по электролизу и в 1833–1834 гг. сформулировал его законы. В 1845 г., исследуя магнитные свойства различных материалов, М. Фарадей открывает явления парамагнетизма и диамагнетизма и установливает факт вращения плоскости поляризации света в магнитном поле (эффект Фарадея). Это было первое наблюдение связи между магнитными и оптическими явлениями, которое позднее было объяснено в рамках электромагнитной теории света Дж. Максвелла.

Примерно в это-же время свойства электричества изучал немецкий физик Георг Симон Ом (G.S. Ohm, 1787-1854). Проведя серию экспериментов, Г. Ом в 1826 г. сформулировал основной закон электрической цепи (закон Ома) и в 1827 г. дал его теоретическое обоснование, ввел понятия «электродвижущая сила», падение напряжения в цепи и «проводимость».

Закон Ома устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника т.е. RI = U . Коэффициент пропорциональности R , получивший в 1881 г. название омическое сопротивление или просто сопротивление зависит от температуры проводника и его геометрических и электрических свойств.

Исследования Г. Ома завершают второй этап развития электротехники, а именно фомирования теоретической базы для расчета характеристик электрических цепей, что стало основой современной электроэнергетики.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).


Warning : strtotime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in on line 56

Warning : date(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 198

Каждый из нас ещё из школьного курса помнит, что электрический ток – направленное движение электрических частиц под воздействием электрического поля. Такими частицами могут быть электроны, ионы и т. д. Тем не менее, несмотря на простую формулировку, многие признаются, что не до конца знают, что же такое электричество, из чего оно состоит, как и, вообще, почему работает вся электротехника.

Для начала стоит обратиться к истории этого вопроса. Впервые термин «электричество» появился ещё в 1600 году в сочинениях английского естествоиспытателя Уильяма Гилберта. Он изучал магнитные свойства тел, в своих сочинениях затрагивая магнитные полюса нашей планеты, описывал несколько опытов с наэлектризованными телами, которые сам провёл.

Об этом можно прочитать в его труде «О магните, магнитных телах и о большом магните - Земле». Главным выводом его работы был такой, что многие тела и вещества могут наэлектризоваться, из-за чего у них появляются магнитные свойства. Его исследования применялись при создании компасов и во многих других областях.

Но Ульям Гилберт отнюдь не является первым, кто обнаружил подобные свойства тел, он просто первый, кто стал изучать их. Ещё в 7 веке до нашей эры греческий философ Фалес заметил, что янтарь, потёртый о шерсть, приобретает удивительные свойства – он начинает притягивать к себе предметы. Знания об электричестве ещё на протяжении нескольких веков так и оставались на этом уровне.

Такое положение оставалось вплоть до 17-18 веков. Это время можно назвать рассветом науки об электричестве. Ульям Гилберт был первым, после него этим вопросом занимались множество других учёных со всего мира: Франклин, Кулон, Гальвани, Вольт, Фарадей, Ампер, а также, русский учёный Василий Петров, открывший в 1802 году вольтову дугу.

Все эти учёные сделали выдающиеся открытия в области электричества, которые положили основу для последующего изучения этого вопроса. С тех пор электричество перестало быть чем-то загадочным, но, несмотря на большие достижения в этом вопросе, загадок и неясностей оставалось ещё очень много.

Самым главным вопросов, как и всегда, был: как же использовать все эти достижения на благо человечества? Потому что, несмотря на значительные успехи в области изучения природы электричества, до внедрения его в жизнь было ещё далеко. Оно всё ещё казалось чем-то загадочным и недостижимым.

Это можно сравнить с тем, как сейчас учёные всего мира изучают космос и ближайшую планету Марс. Уже получено множество сведений, установлено, что до него можно долететь и даже высадиться на поверхность и прочее, но до реального достижения подобных целей пока ещё очень много работы.

Говоря о природе электричества, нельзя не упомянуть о самом главном проявлении его в природе. Ведь именно там человек столкнулся с ним впервые, именно в природе он начал его изучать и старался понять, и делал первые попытки приручить и извлечь пользу для себя.

Конечно, когда мы говорим о природном проявлении электричества, то каждому на ум приходят молнии. Хотя сначала ещё было не понятно, что они собой представляют, а их электрическая природа была установлена только в 18 веке, когда началось активное изучение этого феномена в совокупности с ранее полученными знаниями. Кстати, по одной из версий, именно молнии повлияли на появления жизни на Земле, потому что без них бы не начался бы синтез аминокислот.

Внутри тела человека также есть электричество, без него бы не работала нервная система, а нервный импульс возникает в результате кратковременного напряжения. В океанах и морях живёт множество рыб, которые используют электричество для охоты и защиты. К примеру, электрический угорь может достигать напряжения до 500 Вольт, а у ската мощность разрядов составляет примерно 0,5 киловатт.

Некоторые виды рыб создают вокруг себя легкое электрическое поле, которое искажается от всех предметов в воде, так они могут с лёгкостью ориентироваться даже в очень мутной воде и имеют преимущества перед другими рыбами.

Так что с древних времён электричество часто встречалось в природе, без него невозможно было бы появление человека, а многие животные используют его для нахождения пропитания. Впервые человек столкнулся с этими явлениями именно в природном проявлении, это и подталкивало его на дальнейшие изучения.

Практическое применение электричества

Со временем человек продолжал накапливать знания об этом удивительном феномене. Электричество нехотя раскрывало свои тайны перед ним. Примерно с середины 19 века электричество начало проникать в жизнь человеческой цивилизации. В первую очередь оно стало использоваться для освещения, когда была изобретена лампочка. С его помощью стали передавать информацию на большие расстояния: появилось радио, телевидение, телеграф и т.д.

Но отдельное внимание заслуживает появление различных механизмов и устройств, которые приводились в движение с помощью электричества. И по сей день трудно представить работу какого-либо прибора или машины без электричества. Вся бытовая техника в современном доме работает только на электричестве.

Большим прорывом были и достижения в области добывания электричества, так начали создаваться всё более мощные электростанции, генераторы; для хранения были придуманы аккумуляторные батареи.

Электричество помогло сделать множество других открытий, оно помогает в науке и при исследовании новых вопросов. Некоторые технологии работают на основе электрических свойств, они используются в медицине, промышленности и, конечно, в быту.

Так что же такое электричество?

Как бы странно это не звучало, но повсеместное использование электричества не делает его более понятным. Все знают основные принципы работы, техники безопасности и всё. Одни люди признаются, что вообще не представляют, что такое электричество, другие не знают, почему оно работает именно так, а не иначе, третьи не понимают разницы между напряжением, мощностью и сопротивлением и подобных примеров множество.

Проще всего понять природу электричества на молекулярном уровне. Все вещества состоят из молекул, все молекулы состоят из атомов, а каждый атом же, состоит из ядра, вокруг которого вращаются электроны.

Электроны и являются «переносчиками» электричества, а электрический ток – это непрерывное перемещение большого количества таких электронов.

Электротехника достигла больших успехов за время своего развития, однако, по-прежнему изучение её природы требует больших усилий, ведь многие задачи до сих пор остаются нерешёнными или те решения, которые найдены, не столь эффективны, как могли бы быть. В основе всего лежит превращение сил. Электрическую энергию сегодня можно легко преобразовать в световую, используя для освещения, с её помощью можно двигать различные механизмы и прочее.

Другой особенностью и главным преимуществом электрической перед другими видами энергии является её распространённость, неограниченность в пространстве. Электричество непрерывно сопровождает человека во всех сферах его жизни, считается примером эволюции и взглядов в будущее, а процесс развития техники непрерывно связан с развитием науки и новыми достижениями.

Это расширяет возможности человека, совершенствует его инструменты и гарантирует ему постоянное развитие и движение вперёд в будущее, а многие задачи со временем уже перестают казаться невыполнимыми.


Warning : strftime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 250

Сегодня я хочу рассказать Вам вкратце, что такое электричество.

А то все изучаем темы по электричеству, а про основы и внутренние процессы его возникновения даже не задумываемся.

Сильно углубляться в изучение происхождения и возникновения электричества мы не будем, т.к. это очень трудоемко и время затратно, а вот рассмотреть основы я считаю нужно.

Как Вы все знаете из курса школьной физики, а может и не знаете, все тела состоят из следующих мельчайших частиц:

  • молекула
  • молекула в свою очередь состоит из атомов
  • атом состоит из протонов, нейтронов и электронов

Так вот каждая из перечисленных частиц обладает своим электрическим зарядом.

Заряд бывает положительным, либо отрицательным. Соответственно, тело с положительным зарядом всегда притягивается к телу с отрицательным зарядом. А два тела с положительными зарядами, либо отрицательными, всегда отталкиваются друг от друга.

Разноименные заряженные тела притягиваются, а одноименные — отталкиваются, т.е. в этот момент можно наблюдать тенденцию движения этих тел.

Интенсивность и скорость движения мельчайших частиц в телах зависит от множества следующих факторов:

  • температура
  • деформация
  • трение
  • химические реакции

Происхождение и возникновение электричества

Чуть выше я упоминал, что атом состоит из протонов, нейтронов и электронов. Так вот протоны (положительно заряженные) и нейтроны (нейтрально заряженные) это и есть само ядро атома. На изображении ниже смотрите из чего состоит атом.

Ядро атома всегда имеет положительный заряд. Нейтрон (показаны красным цветом) не обладает электрическим зарядом. Протон (показаны голубым цветом) обладает всегда положительным зарядом.

Вокруг этого ядра вращаются отрицательно заряженные электроны (изображены синим цветом), которые могут находиться от ядра на различном расстоянии, в зависимости от материала вещества. Расстояние, а точнее, энергетический уровень электрона, зависит от энергии, которую электрон может поглощать из вне (обычно от фотонов) и излучать. Этим занимаются электроны внешних электронных оболочек (самые удалённые от ядра). Если электрон «захапает» слишком много энергии, то может покинуть атом, о чём и говорится чуть ниже. Т.е. взаимодействие атома с другими атомами и прочими частицами происходит благодаря внешним электронам.

Заряд электрона в точности равен заряду протона по величине и противоположен по знаку. Поэтому в целом атом нейтрален.

Взаимодействие положительных протонов ядра с отрицательными электронами не всегда постоянно, и по мере удаления электронов от ядра оно уменьшается.

Т.е. получается, что количество электронов в атомах мы можем изменить.

Способы воздействия и факторы, воздействующие на тела я упоминал выше — это свет, температура, деформация, трение и различные химические реакции. А теперь о каждом воздействии поговорим подробнее.

Свет

Например, под воздействием светового излучения на вещество, из него могут вылететь электроны, которые в свою очередь заряжаются положительным зарядом. Такое явление в физике названо фотоэффектом . О нем мы поговорим в следующих статьях. Чтобы не пропустить новые статьи — подпишитесь на получение уведомления о выходе новых статей на сайте.

На явлении фотоэффекта основан принцип действия фотоэлементов.

Температура

При воздействии на вещество (тело) высокой температурой, удаленные от ядра электроны увеличивают свою скорость вращения вокруг ядра и в один прекрасный момент им хватает кинетической энергии, чтобы оторваться от ядра. В этом случае электроны становятся свободными частицами с отрицательными зарядами.

Такое явление в физике называется термоэлектронной эмиссией . Применяется это явление достаточно обширно. Но об этом в следующих статьях. Следите за обновлениями на сайте.

Химическая реакция

При химических реакциях в результате переноса зарядов образуются положительные и отрицательные полюсы. На этом основано устройство аккумуляторов.

Трение и деформация

При воздействии на некоторые тела трением, сжатием, растяжением или же просто деформировать их, то на их поверхности могут появиться электрические заряды. Такое явление физики называют пьезоэлектрическим эффектом, или сокращенно, пьезоэффектом .

Электродвижущая сила

При каждом способе воздействия на тело, в результате появляются небольшие источники двух полярностей: положительной и отрицательной. Каждая из этих полярностей имеет свою величину, которая называется потенциалом. Все Вы наверное слышали такое выражение.

Потенциал — это запасенная потенциальная энергия единицы количества электричества, находящейся в определенной точке электрического поля.

Так вот, чем больше потенциал, тем больше разница между положительным и отрицательным полюсами. Эта вот самая разница потенциалов и есть электродвижущая сила (ЭДС).

Если цепь замкнуть, то под действием ЭДС источника в цепи появится электрический ток.

Единицей измерения разницы потенциалов является вольт. Измерить разницу потенциалов можно вольтметром, или .


P.S. Все перечисленные способы получения электричества являются лишь небольшими примерами. Человек же создал на их основе более крупные источники энергии, такие как генераторы, аккумуляторы и прочее.

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение - все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

  • стекло;
  • алмаз;
  • сапфир;
  • аметист;
  • опал;
  • сланцы;
  • карборунд.

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно - отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

От теории к точной науке

Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.

Закон взаимодействия зарядов

Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.

Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.

Изобретение батареи

В 1791 году итальянский врач, физиолог и физик написал «Трактат о силах электричества при мышечном движении». В нем он фиксировал наличие электрических импульсов в мышечных тканях животных. А также он обнаружил разность потенциалов при взаимодействии двух видов металла и электролита.

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» - источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.

В 1861 году в его честь было введено название «вольт» - единица измерения напряжения.

Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу - «амперметрами».

Закон электрической цепи

Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:

  • падение напряжения в сети;
  • проводимость;
  • электродвижущая сила.

Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.

Английский химик и физик Майкл Фарадей совершил в 1831 году открытие электромагнитной индукции, которая лежит в основе массового производства электроэнергии. На основе этого явления он создает первый электродвигатель. В 1834 году Фарадей открывает законы электролиза, которые привели его к выводу, что носителем электрических сил можно считать атомы. Исследования электролиза сыграли существенную роль в возникновении электронной теории.

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин .

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Будет интересно выяснить, в каком году появилось электричество в России. Освещение впервые появилось в 1879 году в Санкт-Петербурге. Тогда фонари установили на Литейном мосту. Затем в 1883 году начала работу первая электростанция у Полицейского (Народного) моста.

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.

Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.

Невозможно точно сказать, когда появилось электричество в мире. Слишком много разбросанных во времени событий, которые являются одинаково важными. Поэтому вариантов ответа может быть много, и все они будут правильными.

Последние материалы раздела:

Христианская Онлайн Энциклопедия
Христианская Онлайн Энциклопедия

Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

Принятие христианства на руси
Принятие христианства на руси

КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...