Числовые неравенства и их свойства. Как доказывать олимпиадные неравенства

: Расширить свои знания в области доказательства неравенств. Познакомиться с неравенством Коши. Научиться применять изученные методы к доказательству неравенств.

Скачать:

Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №655

Приморского района Санкт-Петербурга

«Доказательство неравенств. Неравенство Коши»

2014г.

Ли Нина Юрьевна

8в класс

Аннотация…………………………………………………………………………………….3

Введение …………………………………………………………………………………….. 4

Историческая справка………………………………………………………………………..4

Неравенство Коши……………………………………………………………………………5

Доказательство неравенств…………………………………………………………………..7

Выводы исследования………………………………………………………………………..10

Список литературы……………………………………………………………………………11

Ли Нина

г. Санкт-Петербург, ГБОУ СОШ №655, 8 класс

«Доказательство неравенств. Неравенство Коши».

руководитель: Мороз Юлия Владимировна, учитель математики

Цель научной работы: Расширить свои знания в области доказательства неравенств. Познакомиться с неравенством Коши. Научиться применять изученные методы к доказательству неравенств.

ВВЕДЕНИЕ

«…основные результаты математики чаще выражаются не равенствами, а неравенствами».

Э. Беккенбах

Решением неравенств мы занимаемся на протяжении всего школьного курса. Неравенства можно решать графическим и аналитическим способом. Чтобы решить любое неравенство существует определенный алгоритм действий, поэтому данная задача является, скорее механическим действием, который не требует творческого подхода.

Напротив, доказательство неравенств требует неформального, вариативного подхода. Поэтому доказательство неравенств является наиболее интересным.

Однако, в школьном курсе математики доказательству неравенств уделяется очень мало внимания. Доказательство неравенств сводится к одному приему- оценке разности частей неравенства. Между тем, на математических олимпиадах часто встречаются задачи на доказательство неравенств с применением других способов и приемов (использование опорных неравенств, метод оценивания). На олимпиадах для школьников по математике также часто предлагаются неравенства, доказательство которых лучше выявляет способности и возможности учащихся, степень их интеллектуального развития. Кроме того, многие задачи повышенной сложности (из различных разделов математики) эффективно решаются с помощью неравенств.

Актуальность темы «Доказательство неравенств» бесспорна, так как неравенства играют фундаментальную роль в большинстве разделов современной математики, без них не может обойтись ни физика, ни астрономия, ни химия. Теория вероятности, математическая статистика, финансовая математика, экономика – все эти взаимосвязанные и обобщающие друг друга науки и в формулировках основных своих законов, и в методах их получения, и в приложениях, постоянно используют неравенства.

Доказательства неравенств помогают развить навык осмысления и применения приемов доказательства неравенств; умение применять их при выполнении различных задач; умение анализировать, обобщать и делать выводы; логически излагать мысли; творчески относится к делу.

Целью данной работа является расширение знаний в области методов и приемов доказательства неравенств.

Для достижения данной цели исследования мы поставили перед собой задачи:

  • сбор информации из различных источников о приемах и методах доказательства неравенств;
  • познакомится с неравенством Коши;
  • Научится применять опорные неравенства к доказательству более сложных неравенств.

ИСТОРИЧЕСКАЯ СПРАВКА

Понятия «больше» и «меньше» наряду с понятием «равенство» возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались еще древние греки. Архимед (III в. до н. э.), занимаясь вычислением длины окружности, установил, что «периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых». Иначе говоря, Архимед указал границы числа π.

В 1557 г., когда Роберт Рекорд впервые ввел знак равенства, он мотивировал свое нововведение следующем образом: никакие два предмета не могут быть между собой более равными, чем два параллельных отрезка. Исходя из знака равенства Рекорда, другой английский ученый Гарриот ввел употребляемые и поныне знаки неравенства, обосновывая нововведение следующим образом: если две величины не равны, то отрезки, фигурирующие в знаке равенства, уже не параллельны, а пересекаются. Пересечение может иметь место справа (>) или слева (

Несмотря на то что знаки неравенства были предложены через 74 года после предложенного Рекордом знака равенства, они вошли в употребление намного раньше последнего. Одна из причин этого явления коренится в том, что типографии применяли в то время для знаков неравенства уже имевшуюся у них латинскую букву V, тогда как наборного знака равенства (=) у них не было, а изготовлять его тогда - было нелегко.

Знаки ≤ и ≥ ввел французский математик П. Буге.

НЕРАВЕНСТВО КОШИ

Применяемые для доказательства неравенств идеи почти столь же разнообразны, как и сами неравенства. В конкретных ситуациях общие методы часто приводят к некрасивым решениям. Но неочевидное комбинирование нескольких «базовых» неравенств удается лишь немногим. И, кроме того, ничто не мешает нам в каждом конкретном случае поискать более удобное, лучшее решение, нежели полученное общим методом. По этой причине доказательства неравенств нередко относят к области искусства. И как во всяком искусстве здесь есть свои технические приемы, набор которых весьма широк и овладеть всеми очень сложно.

Одним из таких «базовых» неравенств является неравенство Коши, указывающее на соотношение двух средних величин – среднего арифметического и среднего геометрического. Среднее арифметическое изучается в школьном курсе пятого класса и выглядит таким образом Среднее геометрическое впервые появляется в курсе геометрии восьмого класса - . В прямоугольном треугольнике таким свойством обладают три отрезка: два катета и перпендикуляр, опущенный из вершины прямого угла на гипотенузу.

Между этими двумя этими величинами существует удивительное соотношение, которое исследовали ученые. О. Коши, французский математик, пришел к выводу о том, что среднее арифметическое n неотрицательных чисел всегда не меньше среднего геометрического этих чисел.


Наряду с неравенством Коши полезно знать следствия из него:

Равенство достигается при a = b.

Неравенства верны, если выполняются условия a > 0, b > 0.

Алгебраическое доказательство этого не равенства довольно простое:

(а – в)² ≥ 0;

Применим формулу «квадрат разности»:

а² - 2ав + в² ≥0;

Прибавим к обеим частям неравенства 4ав :

а² + 2ав + в² ≥4ав;

Применим формулу «квадрат суммы»:

(а + в)² ≥4ав;

Разделим обе части неравенства на 4 :

Так как а и в – положительные по условию, то извлечём из обеих частей неравенства квадратный корень:

Получили искомое выражение.

Рассмотрим геометрическое доказательство:

Дано: ABCD – прямоугольный, AD = a, AB = b, AK – биссектриса угла ВАD.

Доказать:

Доказательство:

  1. АК – биссектриса, следовательно, ВАL = LAD. LAD и BLA – внутренние накрест лежащие углы при параллельных ВС и AD и секущей AL, то есть BLA = LAD.
  2. В = 90°, следовательно, BAL = LAD = 45°, но BLA = LAD, значит, ∆ АВL – равнобедренный, BL = AB = b.
  3. ∆AKD – равнобедренный, так как KD ┴ AD, DAL = 45°, значит AD = KD = a.

Очевидно, что , равенство достигается при

a = b , то есть ABCD – квадрат.

заменим в неравенстве а² на m , b² на n , получим

Или ,

то есть среднее геометрическое не больше среднего арифметического.

ДОКАЗАТЕЛЬСТВО НЕРАВЕНСТВ

Метод синтеза.

Это метод, основанный на получении (синтезировании) неравенства (которое требуется обосновать) из опорных (базисных) неравенств и методов их установления.

Решим задачу, используя метод синтеза

Задача 1. Докажите, что для любых неотрицательных a, b, c справедливо неравенство

Решение. Запишем три неравенства, устанавливающие зависимость между средним арифметическим и средним геометрическим двух неотрицательных чисел

Перемножим почленно полученные неравенства, так как их левая и правая части неотрицательны

Задача 2. Применим неравенство Коши к доказательству этого неравенства:

Метод использования тождеств .

Суть метода состоит в том, что данное неравенство путём равносильных преобразований приводится к очевидному тождеству.

Рассмотрим решение задачи этим методом.

Задача. Докажите, что для любых действительных чисел a и b справедливо неравенство .

Решение. Выделим в левой части неравенства полный квадрат

При любых действительных a и b это выражение неотрицательно, значит и данное неравенство выполнимо, то есть .

ЗАКЛЮЧЕНИЕ

Данная исследовательская работа была направлена на решение следующих задач:

  • сбор информации и изучение различных методов и приемов доказательства неравенств;
  • знакомство с замечательным неравенством Коши, его доказательство алгебраическим и геометрическим способом;
  • применение полученных знаний для доказательства неравенств;
  • знакомство с методом синтеза и использования тождеств в решении поставленных задач.

В процессе решения задач мы достигли поставленной цели нашей исследовательской работы –нахождение оптимально эффективного метода доказательства неравенств.

СПИСОК ЛИТЕРАТУРЫ

  1. Алгебра. 8 класс: учеб. для учащихся общеобр. учрежд./ Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, И.Е.Феоктистов.-13-е изд.- М.:Мнемозина,2013.-384с.
  1. Алгебра. 8 класс. Дидактические материалы. Методические рекомендации/ И.Е.Феоктистов.-3-е изд.,стер.-М.:Мнемозина,2013.-173 с.
  1. Мордкович А.Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А.Г. Мордкович. – 10-е изд., стер. – М.: Мнемозина,2008. – 215с., С 185-200.
  1. Берколайко С.Т. Использование неравенства Коши при решении задач.- М.: Квант, 1975.- №4.

Для любых числовых выражений справедливы следующие свойства.

Свойство 1. Если к обеим частям верного числового неравенства прибавить одно и то же числовое выражение, то получим верное числовое неравенство, то есть справедливо: ; .

Доказательство. Если . Используя коммутативное, ассоциативное и дистрибутивное свойства операции сложения имеем: .

Следовательно, по определению отношения «больше» .

Свойство 2 . Если из обеих частей верного числового неравенства вычесть одно и то же числовое выражение, то получим верное числовое неравенство, то есть справедливо: ;

Доказательство. По условию . Используя предыдущее свойство, прибавим к обеим частям данного неравенства числовое выражение , получим: .

Используя ассоциативное свойство операции сложения, имеем: , следовательно , следовательно .

Следствие. Любое слагаемое можно переносить из одной части числового неравенства в другую с противоположным знаком.

Свойство 3 . Если почленно сложить верные числовые неравенства, то получим верное числовое неравенство, то есть справедливо:

Доказательство. По свойству 1 имеем: и , используя свойство транзитивность отношения «больше», получим: .

Свойство 4. Верные числовые неравенства противоположного смысла можно почленно вычитать, сохраняя знак неравенства, из которого вычитаем, то есть: ;

Доказательство. По определению истинных числовых неравенств . По свойству 3, если . По следствию свойства 2 данной теоремы, любое слагаемое можно переносить из одной части неравенства в другую с противоположным знаком. Следовательно, . Таким образом, если .

Свойство доказывается аналогично.

Свойство 5. Если обе части верного числового неравенства умножить на одно и то же числовое выражение, принимающее положительное значение, не меняя знака неравенства, то получим верное числовое неравенство, то есть:

Доказательство. Из того, что . Имеем: тогда . Используя дистрибутивность операции умножения относительно вычитания, имеем: .

Тогда по определению отношения «больше» .

Свойство доказывается аналогично.

Свойство 6. Если обе части верного числового неравенства умножить на одно и то же числовое выражение, принимающее отрицательное значение, поменяв знак неравенства на противоположный, то получим верное числовое неравенство, то есть: ;

Свойство 7. Если обе части верного числового неравенства разделить на одно и то же числовое выражение, принимающее положительное значение, не меняя знака неравенства, то получим верное числовое неравенство, то есть:


Доказательство. Имеем: . По свойству 5, получим: . Используя ассоциативность операции умножения, имеем: следовательно .

Свойство доказывается аналогично.

Свойство 8. Если обе части верного числового неравенства разделить на одно и то же числовое выражение, принимающее отрицательное значение, поменяв знак неравенства на противоположный, то получим верное числовое неравенство, то есть: ;

Доказательство данного свойства опустим.

Свойство 9. Если почленно перемножить верные числовые неравенства одинакового смысла с отрицательными частями, изменив знак неравенства на противоположный, то получим верное числовое неравенство, то есть:

Доказательство данного свойства опустим.

Свойство 10. Если почленно перемножить верные числовые неравенства одинакового смысла с положительными частями, не меняя знак неравенства, то получим верное числовое неравенство, то есть:

Доказательство данного свойства опустим.

Свойство 11. Если почленно разделить верное числовое неравенство противоположного смысла с положительными частями, сохранив знак первого неравенства, то получим верное числовое неравенство, то есть:

;

.

Доказательство данного свойства опустим.

Пример 1. Являются ли неравенства и равносильными?

Решение. Второе неравенство получено из первого неравенства прибавлением к обеим его частям одного и того же выражения , которое не определенно при . Это означает, что число не может быть решением первого неравенства. Однако является решением второго неравенства. Итак, существует решение второго неравенства, которое не является решением первого неравенства. Следовательно, данные неравенства не являются равносильными. Второе неравенство является следствием первого неравенства, так как любое решение первого неравенства является решением второго.

При этом используются свойства таких операций. Знание этих свойств помогало нам выполнять преобразования алгебраических выражений, решать уравнения.

Там же, в главе 5, мы ввели понятие числового неравенства: а> b - это значит, что а - b - положительное число; а < b - это значит, что а - b - отрицательное число.

Числовые неравенства обладают рядом свойств, знание которых поможет нам в дальнейшем работать с неравенствами.

Для чего нужно уметь решать уравнения, вы знаете: до сих пор математическая модель практически любой реальной ситуации, которую мы рассматривали, представляла собой либо уравнение, либо систему уравнений. На самом деле встречаются и другие математические модели - неравенства, просто мы пока таких ситуаций избегали.

Знание свойств числовых неравенств будет полезно и для исследования функций. Например, с неравенствами связаны такие известные вам свойства функций, как наибольшее и наименьшее значения функции на некотором промежутке, ограниченность функции снизу или сверху. С неравенствами связано и свойство возрастания или убывания функции, о котором пойдет речь в одном из следующих параграфов. Так что, как видите, без знания свойств числовых неравенств нам не обойтись. Да вы и сами уже могли убедиться в необходимости умения работать с неравенствами.

Так, в § 27 мы пользовались оценками для числа у и т. д.), где фактически опирались (хотя и интуитивно) на свойства числовых неравенств. Активно использовали мы знаки (да и свойства) неравенств в § 28 и 30.

Изучением свойств числовых неравенств мы займемся в настоящем параграфе.

Свойство 1 . Если а>b и b> с, то а> с.

Доказательство. По условию, а > b, т. е. а - b - положительное число. Аналогично, так как b > с, делаем вывод, что b - с - .

Сложив положительные числа а - b и b - с, получим положительное число. Имеем (а - b) + (b - с) - а - с. Значит, а- с - положительное число, т. е. а > с, что и требовалось доказать.

Свойство 1 можно обосновать, используя геометрическую модель множества действительных чисел, т. е. числовую прямую. Неравенство а> b означает, что на числовой прямой точка а расположена правее точки b, а неравенство b > с - что точка b расположена правее точки с (рис. 115). Но тогда точка о расположена на прямой правее точки с, т. е. а> с.


Свойство 1 обычно называют свой ством транзитивности (образно с говоря, от пункта а мы добираемся до Рис. 115 пункта с как бы транзитом, с промежуточной остановкой в пункте b).

Свойство 2 . Если а>b, то а + с>Ь + с.

Свойство 3. Если а>b и m> О, то от > bm; если а>b и m < o, то am < bm.

Смысл свойства 3 заключается в следующем: если обе части неравенства умножить на одно и то же положительное число, то знак неравенства следует сохранить;

если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства следует изменить (< на >,> на<).

То же относится к делению обеих частей неравенства на одно и то же положительное или отрицательное число т, поскольку деление на m всегда можно заменить умножением на .
Из свойства 3, в частности, следует, что, умножив обе части неравенства а > b на - 1, получим - а < -b. Это значит, что если изменить знаки у обеих частей неравенства, то надо изменить и знак неравенства: если а>b, то - а <-b.

Свойство 4. Если а>b и c> d, то а + с > b + d.

Доказательство.
I способ. По условию, а > b и с > d, значит, а - b и с - d - положительные числа. Тогда и их сумма, т. е. (а - b) + (с - d) - положительное число. Так как (a-b) + (c-d) = (a + c)-(b + d), то и (а + с) - (b + d) - положительное число. Поэтому a + c>b + d.

II способ. Так как а > Ь, то, согласно свойству 2, а + с > b + с. Аналогично, так как с > d, то с + b > d + b.
Итак, а + с > b + с, b + с > b + d. Тогда, в силу свойства транзитивности, получаем, что а + с > b + d.

Замечание 1 . Мы привели два способа доказательства для того, чтобы вы сами выбрали тот из них, который вам больше понравился или более понятен.

Кроме того, вообще полезно знакомиться с различными обоснованиями одного и того же факта.

Доказательство . Так как а > b и с > 0, то ас > bc. Аналогично, так как с > d и b > o, то cb > db. Итак, ас > bc, bc > bd. Тогда, согласно свойству транзитивности, получаем, что ас > bd.

Обычно неравенства вида а > b, с > d (или а < с, с < d) называют неравенствами одинакового смысла, а неравенства а > b и с < d - неравенствами противоположного смысла.

Свойство 5 означает, что при умножении неравенств одинакового смысла, у которых левые и правые части - положительные числа, получится неравенство того же смысла.

Свойство 6. Если а и b - неотрицательные числа и а > b, то а n > Ь n , где n - любое натуральное число .

Смысл свойства 6 заключается в следующем: если обе части неравенства - неотрицательные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства.

Дополнение к свойству 6. Если n - нечетное число, то для любых чисел а и b из неравенства а > b следует неравенство того же смысла а n > b n .

Вы обратили внимание на то, что в приведенных доказательствах мы пользовались по сути дела всего двумя идеями? Первая идея - составить разность левой и правой частей неравенства и выяснить, какое число получится: положительное или отрицательное. Вторая идея - для доказательства нового свойства использовать уже известные свойства. Так поступают и в других случаях доказательств числовых неравенств: например, так можно доказать те из перечисленных выше свойств, которые мы здесь привели без доказательства (советуем вам в качестве упражнения попробовать восполнить этот пробел). Рассмотрим несколько примеров.

Пусть а и b - положительные числа и а > b.
Доказать, что

Рассмотрим разность. Имеем
По условию, а, b, а - b - положительные числа. Значит, - отрицательное число, т.е. -, откуда следует, что
Пусть а - положительное число. Доказать, что
.


Получили неотрицательное число, значит,
Заметим, что

Пусть а и b неотрицательные числа.
Доказать, что

Составим разность левой и правой частей неравенства. Имеем


называют средним арифметическим чисел а и b число называют средним геометрическим чисел а и b. Таким образом, неравенство, доказанное в примере 3, означает, что среднее арифметическое двух неотрицательных чисел не меньше их среднего геометрического. Доказанное неравенство иногда называют неравенством Коши в честь французского математика XIX века Огюста Коши.

Замечание 2 . Неравенство Коши имеет любопытное геометрическое истолкование. Пусть дан прямоугольный треугольник и пусть высота h, проведенная из вершины прямого угла, делит гипотенузу на отрезки а и b (рис. 116). В геометрии доказано, что

(так что не случайно для этого выражения ввели термин «среднее геометрическое»). А что такое ? Это длина половины гипотенузы. Но из геометрии известно, что медиана m прямоугольного треугольника, проведенная из вершины прямого угла, как раз и равна половине гипотенузы. Таким образом, неравенство Коши означает, что медиана, проведенная к гипотенузе (т. е. ), не меньше высоты, проведенной к гипотенузе (т.е. ), - очевидный геометрический факт (см. рис. 116). Свойства числовых неравенств позволяют сравнивать действительные числа по величине, оценивать результат.

Сравнить числа:

а) Поставим между сравниваемыми числами знак < ; интуиция подсказывает, что первое число меньше второго. Если в результате правильных (т. е. строгих, основанных на свойствах числовых неравенств) рассуждений мы получим верное неравенство, то наша догадка подтвердится.

Если же в результате правильных рассуждений мы получим неверное неравенство, то между заданными числами надо было поставить не знак <, а знак > (или = , если окажется, что числа равны).

Итак, мы считаем, что Тогда, согласно свойству 6, , т. е. 5 < 7. Это верное неравенство, значит, наша догадка подтвердилась: .
б) Поставим между сравниваемыми числами наугад знак > (тут уже действительно наугад, поскольку интуиция здесь не поможет), т. е. предположим,что Возведя обе части неравенства в квадрат и используя свойство 6,получим

Воспользовавшись свойством 2, прибавим к обеим частям этого неравенства число -9; получим

Решение, а) Умножив все части двойного неравенства 2,1<а< 2,2 на одно и то же положительное число 2, получим
2 2,1 < 2а < 2 2,2, т. е. 4,2 <2а< 4,4.

б) Умножив все части двойного неравенства 3,7 < b < 3,8 на одно и то же отрицательное число - 3, получим неравенство противоположного смысла:

3 3,7 > - Зb > - 3 3,8, т. е. - 11,4 < - 36 < - 11,1 (вместо записи вида а > b > с мы перешли к более употребительной записи с

в) Сложив почленно заданные двойные неравенства одинакового смысла, получим

г) Сначала умножим все части двойного неравенства 3,7 < b < < 3,8 на одно и то же отрицательное число -1; получим неравенство противоположного смысла - 3,7 > - b > - 3,8, т. е. - 3,8 < - b < - 3,7.

д) Поскольку все части двойного неравенства 2,1 < а < 2,2 положительны, возведя их в квадрат , получим
2,1 2 <а 2 <2,2 2 , т. е. 4,41 < а 2 < 4,84.

е) Возведя в куб все части двойного неравенства 3,7 < b < 3,8, получим 3,7 3 < b 3 < 3,8 3 , т. е. 50,653 < b 3 < 54,872.

ж) В примере 1 мы установили, что если а и b- положительные числа, то из неравенства а < b следует неравенство противоположного смысла . Значит из двойного неравенства 2,1 < а < 2,2 следует, что


Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Книги и учебники согласно календарному плануванння по математике 8 класса

§ 1 Универсальный способ сравнения чисел

Познакомимся с основными свойствами числовых неравенств, а также рассмотрим универсальный способ сравнения чисел.

Результат сравнения чисел можно записать с помощью равенства или неравенства. Неравенство может быть строгим и нестрогим. Например, а>3 - это строгое неравенство; а≥3 - это нестрогое неравенство. Способ сравнения чисел зависит от вида сравниваемых чисел. Например, если надо сравнить десятичные дроби, то мы сравниваем их поразрядно; если необходимо сравнить обыкновенные дроби с разными знаменателями, то надо привести их к общему знаменателю и сравнить числители. Но существует универсальный способ сравнения чисел. Он состоит в следующем: находят разность чисел a и b; если a - b > 0, то есть положительное число, то a > b; если a - b < 0, то есть отрицательное число, то a < b; если a - b = 0, то a = b. Этот способ удобно использовать для доказательства неравенств. Например, доказать неравенство:

2b2 - 6b + 1 > 2b(b- 3)

Воспользуемся универсальным способом сравнения. Найдем разность выражений 2b2 - 6b + 1и 2b(b - 3);

2b2 - 6b + 1- 2b(b-3)= 2b2 - 6b + 1 - 2b2 + 6b; приведем подобные слагаемые и получим 1. Так как 1 больше нуля, положительное число, то 2b2 - 6b+1 > 2b(b-3).

§ 2 Cвойства числовых неравенств

Свойство 1. Если a> b, b > c, то a> c.

Доказательство. Если a > b, то значит, разность a - b > 0, то есть положительное число. Если b >c, значит, разность b - c > 0, положительное число. Сложим положительные числа a - b и b - c, раскроем скобки и приведем подобные слагаемые, получим (a - b) +(b - c) = a- b +b - c= a - c. Так как сумма положительных чисел - число положительное, значит, a - c положительное число. Следовательно, a > c, что и требовалось доказать.

Свойство 2. Если a < b, c- любое число, то a + с < b+ с. Это свойство можно трактовать так: «К обеим частям верного неравенства можно прибавить одно и то же число, при этом знак неравенства не изменится».

Доказательство. Найдем разность выражений a + с и b+ с, раскроем скобки и приведем подобные слагаемые, получим (a + с) - (b+ с) = a + с - b - с = a - b. По условию a < b, тогда разность a - b- отрицательное число. Значит, и разность (a + с) -(b+ с) отрицательна. Следовательно, a + с < b+ с, что и требовалось доказать.

Свойство 3. Если a < b, c - положительное число, то aс < bс.

Если a < b, c- отрицательное число, то aс > bс.

Доказательство. Найдем разность выражений aс и bс, вынесем за скобки с, тогда имеем aс-bс = с(a-b). Но так как a

Если отрицательное число a-b умножим на положительное число с, то произведение с(a-b) отрицательно, следовательно, разность aс-bс отрицательна, а значит, aс

Если же отрицательное число a-b умножить на отрицательное число с, то произведение с(a-b) будет положительно, следовательно, и разность aс-bс будет положительна, значит, aс>bс. Что и требовалось доказать.

Например, a-7b.

Так как деление можно заменить умножением на число обратное, = n∙, то доказанное свойство можно применить и для деления. Таким образом, смысл этого свойства в следующем: «Обе части неравенства можно умножить или разделить на одно и то же положительное число, при этом знак неравенства не изменится. Обе части неравенства можно умножить или разделить на отрицательное число, при этом необходимо поменять знак неравенства на противоположный знак».

Рассмотрим следствие к свойству 3.

Следствие. Если a

Доказательство. Разделим обе части неравенства a

сократим дроби и получим

Утверждение доказано.

Действительно, например, 2 < 3, но

Свойство 4. Если a > b и c > d, то a + c > b+ d.

Доказательство. Так как a>b и c >d, то разности a-b и c-d - положительные числа. Тогда сумма этих чисел также положительное число (a-b)+(c-d). Раскроем скобки и сгруппируем (a-b)+(c-d) = a-b+ c-d= (a+с)-(b+ d). В виду этого равенства полученное выражение (a+с)-(b+ d) будет положительным числом. Следовательно, a+ c> b+ d.

Неравенства вида a>b, c >d или a < b, c< d называют неравенствами одинакового смысла, а неравенства a>b , c

Свойство 5. Если a > b, c > d, то ac> bd, где a, b, c , d- положительные числа.

Доказательство. Так как a>b и с - положительное число, то, используя свойство 3, получим aс > bс. Так как c >d и b- положительное число, то bc > bd. Следовательно, по первому свойству ac > bd. Смысл доказанного свойства в следующем: «Если умножить почленно неравенства одинакового смысла, у которых левая и правая части - положительные числа, то получим неравенство того же смысла»

Например, 6 < a < 7, 4 < b< 5 тогда, 24 < ab < 35.

Свойство 6. Если a < b, a и b - положительные числа, то an< bn, где n- натуральное число.

Доказательство. Если почленно перемножить n данных неравенств a < b, то, согласно утверждению свойства 5, получим an< bn. Прочесть доказанное утверждение можно так: «Если обе части неравенства - положительные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства».

§ 3 Применение свойств

Рассмотрим пример на применение рассмотренных нами свойств.

Пусть 33 < a < 34, 3 < b< 4. Оценить сумму a + b, разность a - b, произведение a ∙ b и частное a: b.

1) Оценим сумму a + b. Используя свойство 4, получим 33 + 3< a + b < 34 + 4 или

36 < a+ b <38.

2) Оценим разность a - b. Так как нет свойства на вычитание, то разность a - b заменим суммой a +(-b). Сначала оценим (- b). Для этого, используя свойство 3, обе части неравенства 3 < b< 4 умножим на -1, при этом меняем знак неравенства на противоположный знак 3 ∙ (-1) > b∙ (-1) > 4 ∙ (-1). Получим -4< -b< -3. Теперь можно сложить два неравенства одного знака 33< a < 34 и -4< -b< -3. Имеем 2 9< a - b <31.

3) Оценим произведение a ∙ b. По свойству 5 перемножим неравенства одного знака

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

Последние материалы раздела:

Христианская Онлайн Энциклопедия
Христианская Онлайн Энциклопедия

Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

Принятие христианства на руси
Принятие христианства на руси

КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...